11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1)

      , , on behalf of the IOF-IFCC Joint Committee on Bone Metabolism (C-BM)
      Calcified Tissue International
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/β-catenin signaling and disease.

          The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of bone mass by Wnt signaling.

            Wnt proteins are a family of secreted proteins that regulate many aspects of cell growth, differentiation, function, and death. Considerable progress has been made in our understanding of the molecular links between Wnt signaling and bone development and remodeling since initial reports that mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) are causally linked to alterations in human bone mass. Of the pathways activated by Wnts, it is signaling through the canonical (i.e., Wnt/beta-catenin) pathway that increases bone mass through a number of mechanisms including renewal of stem cells, stimulation of preosteoblast replication, induction of osteoblastogenesis, and inhibition of osteoblast and osteocyte apoptosis. This pathway is an enticing target for developing drugs to battle skeletal diseases as Wnt/beta-catenin signaling is composed of a series of molecular interactions that offer potential places for pharmacological intervention. In considering opportunities for anabolic drug discovery in this area, one must consider multiple factors, including (a) the roles of Wnt signaling for development, remodeling, and pathology of bone; (b) how pharmacological interventions that target this pathway may specifically treat osteoporosis and other aspects of skeletal health; and (c) whether the targets within this pathway are amenable to drug intervention. In this Review we discuss the current understanding of this pathway in terms of bone biology and assess whether targeting this pathway might yield novel therapeutics to treat typical bone disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Romosozumab Treatment in Postmenopausal Women with Osteoporosis.

              Background Romosozumab, a monoclonal antibody that binds sclerostin, increases bone formation and decreases bone resorption. Methods We enrolled 7180 postmenopausal women who had a T score of -2.5 to -3.5 at the total hip or femoral neck. Patients were randomly assigned to receive subcutaneous injections of romosozumab (at a dose of 210 mg) or placebo monthly for 12 months; thereafter, patients in each group received denosumab for 12 months, at a dose of 60 mg, administered subcutaneously every 6 months. The coprimary end points were the cumulative incidences of new vertebral fractures at 12 months and 24 months. Secondary end points included clinical (a composite of nonvertebral and symptomatic vertebral) and nonvertebral fractures. Results At 12 months, new vertebral fractures had occurred in 16 of 3321 patients (0.5%) in the romosozumab group, as compared with 59 of 3322 (1.8%) in the placebo group (representing a 73% lower risk with romosozumab; P<0.001). Clinical fractures had occurred in 58 of 3589 patients (1.6%) in the romosozumab group, as compared with 90 of 3591 (2.5%) in the placebo group (a 36% lower risk with romosozumab; P=0.008). Nonvertebral fractures had occurred in 56 of 3589 patients (1.6%) in the romosozumab group and in 75 of 3591 (2.1%) in the placebo group (P=0.10). At 24 months, the rates of vertebral fractures were significantly lower in the romosozumab group than in the placebo group after each group made the transition to denosumab (0.6% [21 of 3325 patients] in the romosozumab group vs. 2.5% [84 of 3327] in the placebo group, a 75% lower risk with romosozumab; P<0.001). Adverse events, including instances of hyperostosis, cardiovascular events, osteoarthritis, and cancer, appeared to be balanced between the groups. One atypical femoral fracture and two cases of osteonecrosis of the jaw were observed in the romosozumab group. Conclusions In postmenopausal women with osteoporosis, romosozumab was associated with a lower risk of vertebral fracture than placebo at 12 months and, after the transition to denosumab, at 24 months. The lower risk of clinical fracture that was seen with romosozumab was evident at 1 year. (Funded by Amgen and UCB Pharma; FRAME ClinicalTrials.gov number, NCT01575834 .).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Calcified Tissue International
                Calcif Tissue Int
                Springer Science and Business Media LLC
                1432-0827
                February 2023
                September 27 2022
                : 112
                : 2
                : 243-257
                Article
                10.1007/s00223-022-01020-9
                36165920
                6ec6cbab-f69f-456f-bbb6-44acb0e4c73a
                © 2022

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article