8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic chemogenetic activation of hippocampal progenitors enhances adult neurogenesis and modulates anxiety-like behavior and fear extinction learning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity. Behavioral analysis indicated anxiolytic behavioral responses in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors at timepoints when newborn neurons are predicted to integrate into the mature hippocampal network. Furthermore, we noted an enhanced fear memory extinction on a contextual fear memory learning task in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors. Our findings indicate that hM3Dq-DREAD-mediated chemogenetic activation of adult hippocampal progenitors impacts distinct aspects of hippocampal neurogenesis, associated with the regulation of anxiety-like behavior and fear memory extinction.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood

          In this Review, Anacker and Hen explore how regulation of dentate gyrus function by adult hippocampal neurogenesis may link the memory and mood functions of the hippocampus. They also examine the potential of targeting such regulation for mood disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Learning enhances adult neurogenesis in the hippocampal formation.

            Thousands of hippocampal neurons are born in adulthood, suggesting that new cells could be important for hippocampal function. To determine whether hippocampus-dependent learning affects adult-generated neurons, we examined the fate of new cells labeled with the thymidine analog bromodeoxyuridine following specific behavioral tasks. Here we report that the number of adult-generated neurons doubles in the rat dentate gyrus in response to training on associative learning tasks that require the hippocampus. In contrast, training on associative learning tasks that do not require the hippocampus did not alter the number of new cells. These findings indicate that adult-generated hippocampal neurons are specifically affected by, and potentially involved in, associative memory formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.

              Various chronic antidepressant treatments increase adult hippocampal neurogenesis, but the functional importance of this phenomenon remains unclear. Here, using genetic and radiological methods, we show that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants. Serotonin 1A receptor null mice were insensitive to the neurogenic and behavioral effects of fluoxetine, a serotonin selective reuptake inhibitor. X-irradiation of a restricted region of mouse brain containing the hippocampus prevented the neurogenic and behavioral effects of two classes of antidepressants. These findings suggest that the behavioral effects of chronic antidepressants may be mediated by the stimulation of neurogenesis in the hippocampus.
                Bookmark

                Author and article information

                Contributors
                Journal
                IBRO Neurosci Rep
                IBRO Neurosci Rep
                IBRO Neuroscience Reports
                Elsevier
                2667-2421
                22 January 2024
                June 2024
                22 January 2024
                : 16
                : 168-181
                Affiliations
                [0005]Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
                Author notes
                [* ]Correspondence to: Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India. vvaidya@ 123456tifr.res.in
                [1]

                Equal first authors

                Article
                S2667-2421(24)00002-2
                10.1016/j.ibneur.2024.01.002
                11240292
                6ec236f9-0873-44c6-acee-18a72d060eea
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 3 July 2023
                : 18 January 2024
                Categories
                Research Paper

                hippocampal neurogenesis,adult neural stem cells,hm3dq-dreadd,fear memory,fear extinction

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content244

                Most referenced authors481