15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antigens (Ags) in Mycobacterium tuberculosis (Mtb) that are constitutively expressed, overexpressed during growth, essential for survival, and highly conserved may be good vaccine targets if they induce the appropriate anti-Mtb Th1 immune response. In this context, stress response-related antigens of Mtb might serve as attractive targets for vaccine development as they are rapidly expressed and are up-regulated during Mtb infection in vivo. Our group recently demonstrated that GrpE, encoded by rv0351 as a cofactor of heat-shock protein 70 (HSP70) in the DnaK operon, is a novel immune activator that interacts with DCs to generate Th1-biased memory T cells in an antigen-specific manner. In this study, GrpE was evaluated as a subunit vaccine in comparison with the well-known HSP70 against the hyper-virulent Mtb Beijing K-strain. Both HSP70- and GrpE-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 in the lung and spleen of Mtb-infected mice, but GrpE only produced a similar level of IFN-γ to that produced by ESAT-6 stimulation during the late phase and the early phase of Mtb K infection, indicating that GrpE is highly-well recognised by the host immune system as a T cell antigen. Mice immunised with the GrpE subunit vaccine displayed enhanced antigen-specific IFN-γ and serum IgG2c responses along with antigen-specific effector/memory T cell expansion in the lungs. In addition, GrpE-immunisation markedly induced multifunctional Th1-type CD4 + T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs of Mtb K-infected mice, whereas HSP70-immunisation induced mixed Th1/Th2 immune responses. GrpE-immunisation conferred a more significant protective effect than that of HSP70-immunisation in terms of bacterial reduction and improved inflammation, accompanied by the remarkable persistence of GrpE-specific multifunctional CD4 + T cells. These results suggest that GrpE is an excellent vaccine antigen component for the development of a multi-antigenic Mtb subunit vaccine by generating Th1-biased memory T cells with multifunctional capacity, and confers durable protection against the highly virulent Mtb K.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heat-shock proteins induce T-cell regulation of chronic inflammation.

            Immune responses to certain heat-shock proteins (HSPs) develop in almost all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, HSPs can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory disease, HSP-derived peptides have been shown to promote the production of anti-inflammatory cytokines, indicating that HSPs have immunoregulatory potential. In this Review, we discuss the unique characteristics of HSPs that endow them with these immunoregulatory qualities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis.

              The live tuberculosis vaccines Mycobacterium bovis BCG (bacille Calmette-Guérin) and Mycobacterium microti both lack the potent, secreted T-cell antigens ESAT-6 (6-kDa early secretory antigenic target) and CFP-10 (10-kDa culture filtrate protein). This is a result of independent deletions in the region of deletion-1 (RD1) locus, which is intact in virulent members of the Mycobacterium tuberculosis complex. To increase their immunogenicity and protective capacity, we complemented both vaccines with different constructs containing the esxA and esxB genes, which encode ESAT-6 and CFP-10 respectively, as well as a variable number of flanking genes. Only reintroduction of the complete locus, comprising at least 11 genes, led to full secretion of the antigens and resulted in specific ESAT-6-dependent immune responses; this suggests that the flanking genes encode a secretory apparatus. Mice and guinea pigs vaccinated with the recombinant strain BCG::RD1-2F9 were better protected against challenge with M. tuberculosis, showing less severe pathology and reduced dissemination of the pathogen, as compared with control animals immunized with BCG alone.
                Bookmark

                Author and article information

                Contributors
                sjshin@yuhs.ac
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                26 September 2018
                26 September 2018
                2018
                : 8
                : 14411
                Affiliations
                [1 ]ISNI 0000 0004 0470 5454, GRID grid.15444.30, Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, , Yonsei University College of Medicine, ; Seoul, South Korea
                [2 ]ISNI 0000 0001 0742 3338, GRID grid.418964.6, Advanced Radiation Technology Institute, , Korea Atomic Energy Research Institute, ; Jeongeup, South Korea
                [3 ]ISNI 0000 0004 6405 9319, GRID grid.495992.a, Division of Immunopathology and Cellular Immunology, , International Tuberculosis Research Center, ; Changwon, South Korea
                [4 ]ISNI 0000 0000 8674 9741, GRID grid.411143.2, Present Address: Myunggok Medical Research Institute, College of Medicine, , Konyang University, ; Daejeon, South Korea
                Article
                32799
                10.1038/s41598-018-32799-z
                6158166
                30258084
                6eb50be1-59b0-4c67-92ed-c366650ef33e
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 April 2018
                : 13 September 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article