14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A family of hyperpolarization-activated mammalian cation channels.

      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pacemaker activity of spontaneously active neurons and heart cells is controlled by a depolarizing, mixed Na+/K+ current, named Ih (or I(f) in the sinoatrial node of the heart). This current is activated on hyperpolarization of the plasma membrane. In addition to depolarizing pacemaker cells, Ih is involved in determining the resting membrane potential of neurons and provides a mechanism to limit hyperpolarizing currents in these cells. Hormones and neurotransmitters that induce a rise in cyclic AMP levels increase Ih by a mechanism that is independent of protein phosphorylation, and which involves direct binding of the cyclic nucleotide to the channel that mediates Ih. Here we report the molecular cloning and functional expression of the gene encoding a hyperpolarization-activated cation channel (HAC1) that is present in brain and heart. This channel exhibits the general properties of Ih channels. We have also identified full-length sequences of two related channels, HAC2 and HAC3, that are specifically expressed in the brain, indicating the existence of a family of hyperpolarization-activated cation channels.

          Related collections

          Author and article information

          Journal
          9634236
          10.1038/31255

          Comments

          Comment on this article

          scite_