8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Bacillus cereus in Dairy Products in China

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacillus cereus is a common and ubiquitous foodborne pathogen with an increasing prevalence rate in dairy products in China. High and unmet demands for such products, particularly milk, raise the risk of B. cereus associated contamination. The presence of B. cereus and its virulence factors in dairy products may cause food poisoning and other illnesses. Thus, this review first summarizes the epidemiological characteristics and analytical assays of B. cereus from dairy products in China, providing insights into the implementation of intervention strategies. In addition, the recent achievements on the cytotoxicity and mechanisms of B. cereus are also presented to shed light on the therapeutic options for B. cereus associated infections.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          The use of bacterial spore formers as probiotics.

          The field of probiosis has emerged as a new science with applications in farming and aqaculture as alternatives to antibiotics as well as prophylactics in humans. Probiotics are being developed commercially for both human use, primarily as novel foods or dietary supplements, and in animal feeds for the prevention of gastrointestinal infections, with extensive use in the poultry and aquaculture industries. The impending ban of antibiotics in animal feed, the current concern over the spread of antibiotic resistance genes, the failure to identify new antibiotics and the inherent problems with developing new vaccines make a compelling case for developing alternative prophylactics. Among the large number of probiotic products in use today are bacterial spore formers, mostly of the genus Bacillus. Used primarily in their spore form, these products have been shown to prevent gastrointestinal disorders and the diversity of species used and their applications are astonishing. Understanding the nature of this probiotic effect is complicated, not only because of the complexities of understanding the microbial interactions that occur within the gastrointestinal tract (GIT), but also because Bacillus species are considered allochthonous microorganisms. This review summarizes the commercial applications of Bacillus probiotics. A case will be made that many Bacillus species should not be considered allochthonous microorganisms but, instead, ones that have a bimodal life cycle of growth and sporulation in the environment as well as within the GIT. Specific mechanisms for how Bacillus species can inhibit gastrointestinal infections will be covered, including immunomodulation and the synthesis of antimicrobials. Finally, the safety and licensing issues that affect the use of Bacillus species for commercial development will be summarized, together with evidence showing the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case by basis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Milk kefir: nutritional, microbiological and health benefits.

            Kefir is fermented milk produced from grains that comprise a specific and complex mixture of bacteria and yeasts that live in a symbiotic association. The nutritional composition of kefir varies according to the milk composition, the microbiological composition of the grains used, the time/temperature of fermentation and storage conditions. Kefir originates from the Caucasus and Tibet. Recently, kefir has raised interest in the scientific community due to its numerous beneficial effects on health. Currently, several scientific studies have supported the health benefits of kefir, as reported historically as a probiotic drink with great potential in health promotion, as well as being a safe and inexpensive food, easily produced at home. Regular consumption of kefir has been associated with improved digestion and tolerance to lactose, antibacterial effect, hypocholesterolaemic effect, control of plasma glucose, anti-hypertensive effect, anti-inflammatory effect, antioxidant activity, anti-carcinogenic activity, anti-allergenic activity and healing effects. A large proportion of the studies that support these findings were conducted in vitro or in animal models. However, there is a need for systematic clinical trials to better understand the effects of regular use of kefir as part of a diet, and for their effect on preventing diseases. Thus, the present review focuses on the nutritional and microbiological composition of kefir and presents relevant findings associated with the beneficial effects of kefir on human and animal health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PlcR Virulence Regulon of Bacillus cereus

              PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the reference strain and its isogenic Δ-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection (bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient adaptation of B. cereus to its host environment.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                14 July 2020
                July 2020
                : 12
                : 7
                : 454
                Affiliations
                [1 ]College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; xiaoyeliu@ 123456pku.edu.cn (X.-Y.L.); sy20193050810@ 123456cau.edu.cn (Q.H.)
                [2 ]Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Advanced Innovation Center for Engineering Science and Emerging Technology, College of Engineering, Peking University, Beijing 100871, China
                [3 ]National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; dingsy@ 123456cau.edu.cn
                [4 ]National Feed Drug Reference Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; xufei@ 123456caas.cn
                Author notes
                [* ]Correspondence: zhuk@ 123456cau.edu.cn
                [†]

                These authors contributed equally to this review.

                Author information
                https://orcid.org/0000-0001-7753-2943
                Article
                toxins-12-00454
                10.3390/toxins12070454
                7405013
                32674390
                6e81610b-118a-46a8-a317-c67ca5336955
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 May 2020
                : 09 July 2020
                Categories
                Review

                Molecular medicine
                bacillus cereus,china,dairy product,prevalence,virulence factor
                Molecular medicine
                bacillus cereus, china, dairy product, prevalence, virulence factor

                Comments

                Comment on this article