0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hardware-efficient variational quantum algorithm in trapped-ion quantum computer

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI. We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods. We apply HEA-TI to state engineering of cluster states and analyze the scaling of required quantum resources. We also apply HEA-TI to solve the ground state problem of chemical molecules \(\mathrm{H_{2}}\), \(\mathrm{LiH}\) and \(\mathrm{F_{2}}\). We numerically analyze the quantum computing resources required to achieve chemical accuracy and examine the performance under realistic experimental noise and statistical fluctuation. The efficiency of this ansatz is shown to be comparable to other commonly used variational ansatzes like UCCSD, with the advantage of substantially easier implementation in the trapped-ion quantum simulator. This approach showcases the hardware-efficient ansatz as a powerful tool for the application of the near-term quantum computer.

          Related collections

          Author and article information

          Journal
          03 July 2024
          Article
          2407.03116
          6e7a3a47-3294-4968-8234-23cd3333da8d

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article