0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stratification of DNA mismatch repair (MMR) status in patients with colorectal cancer (CRC) enables individual clinical treatment decision making. The present study aimed to develop and validate a deep learning (DL) model based on the pre-treatment CT images for predicting MMR status in CRC.

          Methods

          1812 eligible participants (training cohort: n = 1124; internal validation cohort: n = 482; external validation cohort: n = 206) with CRC were enrolled from two institutions. All pretherapeutic CT images from three dimensions were trained by the ResNet101, then integrated by Gaussian process regression (GPR) to develop a full-automatic DL model for MMR status prediction. The predictive performance of the DL model was evaluated using the area under the receiver operating characteristic curve (AUC) and then tested in the internal and external validation cohorts. Additionally, the participants from institution 1 were sub-grouped by various clinical factors for subgroup analysis, then the predictive performance of the DL model for identifying MMR status between participants in different groups were compared.

          Results

          The full-automatic DL model was established in the training cohort to stratify the MMR status, which presented promising discriminative ability with the AUCs of 0.986 (95% CI 0.971–1.000) in the internal validation cohort and 0.915 (95% CI 0.870–0.960) in the external validation cohort. In addition, the subgroup analysis based on the thickness of CT images, clinical T and N stages, gender, the longest diameter, and the location of tumors revealed that the DL model showed similar satisfying prediction performance.

          Conclusions

          The DL model may potentially serve as a noninvasive tool to facilitate the pre-treatment individualized prediction of MMR status in patients with CRC, which could promote the personalized clinical-making decision.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12967-023-04023-8.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer Statistics, 2021

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in radiology

              Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this O pinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.
                Bookmark

                Author and article information

                Contributors
                dengyanh@mail.sysu.edu.cn
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                22 March 2023
                22 March 2023
                2023
                : 21
                : 214
                Affiliations
                [1 ]GRID grid.488525.6, Department of Radiology, , The Sixth Affiliated Hospital, Sun Yat-Sen University, ; Guangzhou, 510655 Guangdong China
                [2 ]GRID grid.488525.6, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Research Institute of Gastroenterology, , The Sixth Affiliated Hospital, Sun Yat-Sen University, ; Guangzhou, 510655 Guangdong China
                [3 ]GRID grid.488525.6, Department of Medical Oncology, , The Sixth Affiliated Hospital, Sun Yat-Sen University, ; Guangzhou, 510655 Guangdong China
                [4 ]GRID grid.488525.6, Department of Colorectal Surgery, Department of General Surgery, , The Sixth Affiliated Hospital, Sun Yat-Sen University, ; Guangzhou, 510655 Guangdong China
                [5 ]GRID grid.412633.1, ISNI 0000 0004 1799 0733, Department of Radiology, , The First Affiliated Hospital of Zhengzhou University, ; Zhengzhou, 450052 Henan China
                [6 ]GRID grid.12981.33, ISNI 0000 0001 2360 039X, School of Public Health (Shenzhen), , Shenzhen Campus of Sun Yat-Sen University, ; Shenzhen, 518107 Guangdong China
                Article
                4023
                10.1186/s12967-023-04023-8
                10035255
                36949511
                6e5fdaa6-76cb-4c6e-8713-18dc5544d97e
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 28 December 2022
                : 27 February 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82001765
                Award Recipient :
                Funded by: National Key R&D Program of China
                Award ID: 2019YFC1316000
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Medicine
                dna mismatch repair,deep learning,colorectal cancer,computed tomography,resnet101
                Medicine
                dna mismatch repair, deep learning, colorectal cancer, computed tomography, resnet101

                Comments

                Comment on this article