22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human NK cells: surface receptors, inhibitory checkpoints, and translational applications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NK cells play important roles in innate defenses against viruses and in the control of tumor growth and metastasis. The regulation/induction of NK cell function is mediated by an array of activating or inhibitory surface receptors. In humans, major activating receptors involved in target cell killing are the natural cytotoxicity receptors (NCRs) and NKG2D. Activating receptors recognize ligands that are overexpressed or expressed de novo upon cell stress, viral infection, or tumor transformation. The HLA-class I-specific inhibitory receptors, including KIRs recognizing HLA-class I allotypic determinants and CD94/NKG2A recognizing the class-Ib HLA-E, constitute a fail-safe mechanism to avoid unwanted NK-mediated damage to healthy cells. Other receptors such as PD-1, primarily expressed by activated T lymphocytes, are important inhibitory checkpoints of immune responses that ensure T-cell tolerance. PD-1 also may be expressed by NK cells in cancer patients. Since PD-1 ligand (PD-L1) may be expressed by different tumors, PD-1/PD-L1 interactions inactivate both T and NK cells. Thus, the reliable evaluation of PD-L1 expression in tumors has become a major issue to select patients who may benefit from therapy with mAbs disrupting PD-1/PD-L1 interactions. Recently, NKG2A was revealed to be an important checkpoint controlling both NK and T-cell activation. Since most tumors express HLA-E, mAbs targeting NKG2A has been used alone or in combination with other therapeutic mAbs targeting PD-1 or tumor antigens (e.g., EGFR), with encouraging results. The translational value of NK cells and their receptors is evidenced by the extraordinary therapeutic success of haploidentical HSCT to cure otherwise fatal high-risk leukemias.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

            The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells

              Summary Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.
                Bookmark

                Author and article information

                Journal
                Cellular & Molecular Immunology
                Cell Mol Immunol
                Springer Nature
                1672-7681
                2042-0226
                February 18 2019
                Article
                10.1038/s41423-019-0206-4
                6474200
                30778167
                6e580340-7bb5-4be2-b8bc-7650ed5c3caa
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article