3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diversity and Chemical Library Networks of Large Data Sets

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DrugBank 5.0: a major update to the DrugBank database for 2018

          Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extended-connectivity fingerprints.

            Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular characterization. Historically, topological fingerprints were developed for substructure and similarity searching. ECFPs were developed specifically for structure-activity modeling. ECFPs are circular fingerprints with a number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent an essentially infinite number of different molecular features (including stereochemical information); their features represent the presence of particular substructures, allowing easier interpretation of analysis results; and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for different uses. While the use of ECFPs has been widely adopted and validated, a description of their implementation has not previously been presented in the literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DrugBank: a knowledgebase for drugs, drug actions and drug targets

              DrugBank is a richly annotated resource that combines detailed drug data with comprehensive drug target and drug action information. Since its first release in 2006, DrugBank has been widely used to facilitate in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. The latest version of DrugBank (release 2.0) has been expanded significantly over the previous release. With ∼4900 drug entries, it now contains 60% more FDA-approved small molecule and biotech drugs including 10% more ‘experimental’ drugs. Significantly, more protein target data has also been added to the database, with the latest version of DrugBank containing three times as many non-redundant protein or drug target sequences as before (1565 versus 524). Each DrugCard entry now contains more than 100 data fields with half of the information being devoted to drug/chemical data and the other half devoted to pharmacological, pharmacogenomic and molecular biological data. A number of new data fields, including food–drug interactions, drug–drug interactions and experimental ADME data have been added in response to numerous user requests. DrugBank has also significantly improved the power and simplicity of its structure query and text query searches. DrugBank is available at http://www.drugbank.ca
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Chemical Information and Modeling
                J. Chem. Inf. Model.
                American Chemical Society (ACS)
                1549-9596
                1549-960X
                May 09 2022
                November 01 2021
                May 09 2022
                : 62
                : 9
                : 2186-2201
                Affiliations
                [1 ]Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
                [2 ]Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
                [3 ]Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
                [4 ]DIFACQUIM Research Group, Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico
                [5 ]Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
                Article
                10.1021/acs.jcim.1c01013
                34723537
                6e5281ee-d2ed-4347-8818-5b8482ba4a77
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article