14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of an antioxidant system after early weaning in piglets.

      Journal of animal science
      Animals, Antioxidants, metabolism, Gene Expression Regulation, Gene Expression Regulation, Developmental, physiology, Oxidative Stress, Swine, Weaning

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this experiment was to investigate oxidative injury and the development of an antioxidant system after early weaning in piglets. A total of 40 piglets (Landrace× Large White, weaned at 14 d after birth) were randomly slaughtered 0 (w0d), 1 (w1d), 3 (w3d), 5 (w5d), or 7 d (w7d; n = 8) after weaning. Concentrations of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyl and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase were measured in plasma. Gene expressions of antioxidant enzymes were determined by quantitative reverse transcription PCR analysis. The mediation of transcription factor 65 (p65) and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways by oxidative stress was determined by Western blot analysis. Results showed that the plasma MDA level was significantly higher at 3 d (P < 0.05) and that the protein carbonyl level increased at 1, 3, and 5 d (P < 0.05) compared with w0d. In addition, early weaning suppressed the plasma activity of SOD at 1 d (P < 0.05) and reduced the GSH-Px activity at 3 d (P < 0.05). The expression results in the jejunum indicate that the genes related to antioxidant enzymes were downregulated (P < 0.05) at 3 and 5 d after weaning. Uncoupling protein 2 (Ucp2), which is considered to be a feedback regulation on reactive oxygen species generation, tended to decrease in the ileum (P < 0.05) after weaning. Tumor protein 53 (p53), which regulates reactive oxygen species generation, was enhanced (P < 0.05) in the jejunum after weaning. Meanwhile, early weaning suppressed p65 (at 3, 5, and 7 d; P < 0.05) and Nrf2 (at 5 and 7 d; P < 0.05) signals in the jejunum, which might feedback-regulate antioxidant gene expression and promote the development of the antioxidant system. Therefore, we speculate that weaning disrupted oxidative balance and caused oxidative injury in piglets, and this imbalance can recover with the development of an antioxidant system via feedback regulation.

          Related collections

          Author and article information

          Journal
          24352957
          10.2527/jas.2013-6986

          Chemistry
          Animals,Antioxidants,metabolism,Gene Expression Regulation,Gene Expression Regulation, Developmental,physiology,Oxidative Stress,Swine,Weaning

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content304

          Cited by120