9
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A city cluster risk-based approach for Sars-CoV-2 and isolation barriers based on anonymized mobile phone users' location data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Anonymized mobile phone users’ location data to identify mobility among cities.

          • Clusters were identified based on mobility patterns amongst cities of the state.

          • A city cluster risk-based approach for Sars-CoV-2 and isolation barriers.

          • Non-infected and infected clusters are classified according to risk and criticality.

          • Isolation policies can be supported by analytics for economic recovery planning.

          Abstract

          Given the recent outbreak of Sars-CoV-2, several countries started to seek different strategies to control contamination and minimize fatalities, which are usually the primary objectives for all strategies. Secondary objectives are related to economic factors, therefore ensuring that society would be able is to keep its essential activities and avoid supply disruptions. This paper presents an application of anonymized mobile phone users' location data to estimate population flow amongst cities with an origin-destination matrix. The work includes a clustering analysis of cities, which may enable policymakers (and epidemiologists) to develop public policies giving the appropriate consideration for each set of cities within a Province or State. Risk measures are included to analyze the severity of the spread among the clusters, which can be ranked. Then, intelligence can be obtained from the analysis, and some clusters could be isolated to avoid contagion while keeping their economic activities. Therefore, this analysis is reproducible for other states of Brazil and other countries and can be adapted for districts within a city, especially considering the possibility of a second wave COVID-19 pandemic.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study

          Summary Background Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention interventions. Methods We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan and surrounding cities, which began Jan 23–24, 2020. We used data on monthly flight bookings from the Official Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile interval (CrI). Findings In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 (95% CrI 2·47–2·86) and that 75 815 individuals (95% CrI 37 304–130 330) have been infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8–7·1). We estimated that in the baseline scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227–805), 113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan, respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks. Interpretation Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak epicentres, unless substantial public health interventions at both the population and personal levels are implemented immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. Preparedness plans and mitigation interventions should be readied for quick deployment globally. Funding Health and Medical Research Fund (Hong Kong, China).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak

            Motivated by the rapid spread of COVID-19 in Mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated based on internationally reported cases, and shows that at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in Mainland China, but has a more marked effect at the international scale, where case importations were reduced by nearly 80% until mid February. Modeling results also indicate that sustained 90% travel restrictions to and from Mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The effect of human mobility and control measures on the COVID-19 epidemic in China

              The ongoing COVID-19 outbreak expanded rapidly throughout China. Major behavioral, clinical, and state interventions have been undertaken to mitigate the epidemic and prevent the persistence of the virus in human populations in China and worldwide. It remains unclear how these unprecedented interventions, including travel restrictions, affected COVID-19 spread in China. We use real-time mobility data from Wuhan and detailed case data including travel history to elucidate the role of case importation on transmission in cities across China and ascertain the impact of control measures. Early on, the spatial distribution of COVID-19 cases in China was explained well by human mobility data. Following the implementation of control measures, this correlation dropped and growth rates became negative in most locations, although shifts in the demographics of reported cases were still indicative of local chains of transmission outside Wuhan. This study shows that the drastic control measures implemented in China substantially mitigated the spread of COVID-19.
                Bookmark

                Author and article information

                Journal
                Sustain Cities Soc
                Sustain Cities Soc
                Sustainable Cities and Society
                Elsevier Ltd.
                2210-6707
                2210-6715
                5 November 2020
                5 November 2020
                : 102574
                Affiliations
                [a ]Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
                [b ]Management Engineering Department, Universidade Federal de Pernambuco, Recife, PE, Brazil
                [c ]In Loco Company, Recife, PE, Brazil
                Author notes
                [* ]Corresponding author.
                Article
                S2210-6707(20)30792-7 102574
                10.1016/j.scs.2020.102574
                7644257
                6e177171-cb85-49af-aa18-592e9db0c4a6
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 July 2020
                : 22 October 2020
                : 23 October 2020
                Categories
                Article

                sars-cov-2,covid-19,public health,networks,clustering,weighted directed graphs

                Comments

                Comment on this article