26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microtubules and Lis-1/NudE/Dynein Regulate Invasive Cell-on-Cell Migration in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The environment through which cells migrate in vivo differs considerably from the in vitro environment where cell migration is often studied. In vivo many cells migrate in crowded and complex 3-dimensional tissues and may use other cells as the substratum on which they move. This includes neurons, glia and their progenitors in the brain. Here we use a Drosophila model of invasive, collective migration in a cellular environment to investigate the roles of microtubules and microtubule regulators in this type of cell movement. Border cells are of epithelial origin and have no visible microtubule organizing center (MTOC). Interestingly, microtubule plus-end growth was biased away from the leading edge. General perturbation of the microtubule cytoskeleton and analysis by live imaging showed that microtubules in both the migrating cells and the substrate cells affect movement. Also, whole-tissue and cell autonomous deletion of the microtubule regulator Stathmin had distinct effects. A screen of 67 genes encoding microtubule interacting proteins uncovered cell autonomous requirements for Lis-1, NudE and Dynein in border cell migration. Net cluster migration was decreased, with initiation of migration and formation of dominant front cell protrusion being most dramatically affected. Organization of cells within the cluster and localization of cell-cell adhesion molecules were also abnormal. Given the established role of Lis-1 in migrating neurons, this could indicate a general role of Lis-1/NudE, Dynein and microtubules, in cell-on-cell migration. Spatial regulation of cell-cell adhesion may be a common theme, consistent with observing both cell autonomous and non-autonomous requirements in both systems.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases.

          Germ-line transformation via transposable elements is a powerful tool to study gene function in Drosophila melanogaster. However, some inherent characteristics of transposon-mediated transgenesis limit its use for transgene analysis. Here, we circumvent these limitations by optimizing a phiC31-based integration system. We generated a collection of lines with precisely mapped attP sites that allow the insertion of transgenes into many different predetermined intergenic locations throughout the fly genome. By using regulatory elements of the nanos and vasa genes, we established endogenous sources of the phiC31 integrase, eliminating the difficulties of coinjecting integrase mRNA and raising the transformation efficiency. Moreover, to discriminate between specific and rare nonspecific integration events, a white gene-based reconstitution system was generated that enables visual selection for precise attP targeting. Finally, we demonstrate that our chromosomal attP sites can be modified in situ, extending their scope while retaining their properties as landing sites. The efficiency, ease-of-use, and versatility obtained here with the phiC31-based integration system represents an important advance in transgenesis and opens up the possibility of systematic, high-throughput screening of large cDNA sets and regulatory elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-distance neuronal migration in the adult mammalian brain.

            During the development of the mammalian brain, neuronal precursors migrate to their final destination from their site of birth in the ventricular and subventricular zones (VZ and SVZ, respectively). SVZ cells in the walls of the lateral ventricle continue to proliferate in the brain of adult mice and can generate neurons in vitro, but their fate in vivo is unknown. Here SVZ cells from adult mice that carry a neuronal-specific transgene were grafted into the brain of adult recipients. In addition, the fate of endogenous SVZ cells was examined by microinjection of tritiated thymidine or a vital dye that labeled a discrete population of SVZ cells. Grafted and endogenous SVZ cells in the lateral ventricle of adult mice migrate long distances and differentiate into neurons in the olfactory bulb.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats.

              Lissencephaly (agyria-pachygyria) is a human brain malformation manifested by a smooth cerebral surface and abnormal neuronal migration. Identification of the gene(s) involved in this disorder would facilitate molecular dissection of normal events in brain development. Type 1 lissencephaly occurs either as an isolated abnormality or in association with dysmorphic facial appearance in patients with Miller-Dieker syndrome. About 15% of patients with isolated lissencephaly and more than 90% of patients with Miller-Dieker syndrome have microdeletions in a critical 350-kilobase region in chromosome 17p13.3 (ref. 6). These deletions are hemizygous, so haplo-insufficiency for a gene in this interval is implicated. Here we report the cloning of a gene (LIS-1, lissencephaly-1) in 17p13.3 that is deleted in Miller-Dieker patients. Non-overlapping deletions involving either the 5' or 3' end of the gene were found in two patients, identifying LIS-1 as the disease gene. The deduced amino-acid sequence shows significant homology to beta-subunits of heterotrimeric G proteins, suggesting that it could possibly be involved in a signal transduction pathway crucial for cerebral development.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                13 July 2012
                : 7
                : 7
                : e40632
                Affiliations
                [1 ]Institute of Molecular and Cell Biology, Singapore, Singapore
                [2 ]Department of Biological Sciences, The National University of Singapore, Singapore, Singapore
                Stockholm University, Sweden
                Author notes

                Conceived and designed the experiments: NY MI PR. Performed the experiments: NY MI. Analyzed the data: NY MI AC PR. Contributed reagents/materials/analysis tools: AC. Wrote the paper: PR.

                [¤]

                Current address: Department of Biological Sciences, The National University of Singapore, Singapore, Singapore

                Article
                PONE-D-12-12871
                10.1371/journal.pone.0040632
                3396602
                22808215
                6e061328-9863-4fbc-bb70-e65f2032fc88
                Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 May 2012
                : 11 June 2012
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Biophysics
                Cell Motility
                Microtubules
                Developmental Biology
                Morphogenesis
                Cell Migration
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Molecular Cell Biology
                Cellular Structures
                Cytoskeleton
                Cell Adhesion

                Uncategorized
                Uncategorized

                Comments

                Comment on this article