33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      N-acetyltransferase 8, a positional candidate for blood pressure and renal regulation: resequencing, association and in silico study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Kidneys have an important function in blood pressure (BP) regulation and elevated BP may lead to kidney failure. Chr2p12-p13 region linked to BP traits in multiple studies harbours a potential candidate for BP and renal function, N-acetyltransferase 8 (NAT8) expressed in embryonic and adult kidney and associated with nephrotoxicity response.

          Methods/Results

          We report the first study exploring NAT8 as a potential candidate gene for blood pressure and kidney function. The resequencing (n = 42, random Estonian samples) identified 15 NAT8 polymorphisms, including 6 novel variants. The diversity of NAT8 5' upstream region (π/bp = 0.00320) exceeded up to 10 times the variation in the NAT8 genic region (π/bp = 0.00037) as well as the average variation (π/bp = 0.00040) for the promoters of 29 reference genes associated with hypertension. We suggest that a potential source for such high variation could be an active gene conversion process from NAT8B duplicate gene to NAT8. Similarly to NAT8, several reference genes with the most variable upstream regions have also duplicate copies. The NAT8 promoter SNPs were targeted with pilot quantitative association studies for blood pressure (n = 137, healthy unrelated individuals) and for the index of kidney function – estimated glomerular filtration rate (eGFR; n = 157 hypertensives with and without nephropathy). Minor alleles of these polymorphisms revealed a significant protective effect against elevated systolic BP as well as kidney failure in hypertension patients (p < 0.05; linear regression model, addictive effect).

          Conclusion

          The full resequencing and pilot association study of a novel positional candidate gene for blood pressure and renal function, human N-acetyltransferase 8, suggested a contribution of highly variable NAT8 promoter polymorphisms in determination of systolic blood pressure and eGFR. Based on in silico analysis, we raise the hypothesis that the alternative SNP alleles of the NAT8 upstream region may have differential effect on gene expression.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Blood pressure and end-stage renal disease in men.

          End-stage renal disease in the United States creates a large burden for both individuals and society as a whole. Efforts to prevent the condition require an understanding of modifiable risk factors. We assessed the development of end-stage renal disease through 1990 in 332,544 men, 35 to 57 years of age, who were screened between 1973 and 1975 for entry into the Multiple Risk Factor Intervention Trial (MRFIT). We used data from the national registry for treated end-stage renal disease of the Health Care Financing Administration and from records on death from renal disease from the National Death Index and the Social Security Administration. During an average of 16 years of follow-up, 814 subjects either died of end-stage renal disease or were treated for that condition (15.6 cases per 100,000 person-years of observation). A strong, graded relation between both systolic and diastolic blood pressure and end-stage renal disease was identified, independent of associations between the disease and age, race, income, use of medication for diabetes mellitus, history of myocardial infarction, serum cholesterol concentration, and cigarette smoking. As compared with men with an optimal level of blood pressure (systolic pressure or = 210 mm Hg or diastolic pressure > or = 120 mm Hg) was 22.1 (P < 0.001). These relations were not due to end-stage renal disease that occurred soon after screening and, in the 12,866 screened men who entered the MRFIT study, were not changed by taking into account the base-line serum creatinine concentration and urinary protein excretion. The estimated risk of end-stage renal disease associated with elevations of systolic pressure was greater than that linked with elevations of diastolic pressure when both variables were considered together. Elevations of blood pressure are a strong independent risk factor for end-stage renal disease; interventions to prevent the disease need to emphasize the prevention and control of both high-normal and high blood pressure.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Molecular mechanisms of human hypertension.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions.

              Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and possibly osteocrin/musclin. Three single membrane-spanning natriuretic peptide receptors (NPRs) have been identified. Two, NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmembrane guanylyl cyclases, enzymes that catalyze the synthesis of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity and controls the local concentrations of natriuretic peptides through constitutive receptor-mediated internalization and degradation. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure, whereas homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. The physiological effects of natriuretic peptides are elicited through three classes of cGMP binding proteins: cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. In this comprehensive review, the structure, function, regulation, and biological consequences of natriuretic peptides and their associated signaling proteins are described.
                Bookmark

                Author and article information

                Journal
                BMC Med Genet
                BMC Medical Genetics
                BioMed Central
                1471-2350
                2008
                10 April 2008
                : 9
                : 25
                Affiliations
                [1 ]Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
                [2 ]Department of Cardiology, University of Tartu, Tartu, Estonia
                [3 ]Department of Internal Medicine, University of Tartu, Tartu, Estonia
                [4 ]Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
                Article
                1471-2350-9-25
                10.1186/1471-2350-9-25
                2330028
                18402670
                6df005d5-b26e-46ec-9c6d-6fbca2c1b037
                Copyright © 2008 Juhanson et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 October 2007
                : 10 April 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article