1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future

      1 , 1 , 1 , 1 , 1 , 2
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          A high-mobility electron-transporting polymer for printed transistors.

          Printed electronics is a revolutionary technology aimed at unconventional electronic device manufacture on plastic foils, and will probably rely on polymeric semiconductors for organic thin-film transistor (OTFT) fabrication. In addition to having excellent charge-transport characteristics in ambient conditions, such materials must meet other key requirements, such as chemical stability, large solubility in common solvents, and inexpensive solution and/or low-temperature processing. Furthermore, compatibility of both p-channel (hole-transporting) and n-channel (electron-transporting) semiconductors with a single combination of gate dielectric and contact materials is highly desirable to enable powerful complementary circuit technologies, where p- and n-channel OTFTs operate in concert. Polymeric complementary circuits operating in ambient conditions are currently difficult to realize: although excellent p-channel polymers are widely available, the achievement of high-performance n-channel polymers is more challenging. Here we report a highly soluble ( approximately 60 g l(-1)) and printable n-channel polymer exhibiting unprecedented OTFT characteristics (electron mobilities up to approximately 0.45-0.85 cm(2) V(-1) s(-1)) under ambient conditions in combination with Au contacts and various polymeric dielectrics. Several top-gate OTFTs on plastic substrates were fabricated with the semiconductor-dielectric layers deposited by spin-coating as well as by gravure, flexographic and inkjet printing, demonstrating great processing versatility. Finally, all-printed polymeric complementary inverters (with gain 25-65) have been demonstrated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene).

            Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 °C, the best commercially available inorganic semiconductors are bismuth telluride (Bi(2)Te(3))-based alloys, which possess a figure of merit ZT close to one. Most of the recently discovered thermoelectric materials with ZT>2 exhibit one common property, namely their low lattice thermal conductivities. Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (λ=0.37 W m(-1) K(-1)) yields a ZT=0.25 at room temperature that approaches the values required for efficient devices. © 2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liquid-crystalline semiconducting polymers with high charge-carrier mobility.

              Organic semiconductors that can be fabricated by simple processing techniques and possess excellent electrical performance, are key requirements in the progress of organic electronics. Both high semiconductor charge-carrier mobility, optimized through understanding and control of the semiconductor microstructure, and stability of the semiconductor to ambient electrochemical oxidative processes are required. We report on new semiconducting liquid-crystalline thieno[3,2-b ]thiophene polymers, the enhancement in charge-carrier mobility achieved through highly organized morphology from processing in the mesophase, and the effects of exposure to both ambient and low-humidity air on the performance of transistor devices. Relatively large crystalline domain sizes on the length scale of lithographically accessible channel lengths ( approximately 200 nm) were exhibited in thin films, thus offering the potential for fabrication of single-crystal polymer transistors. Good transistor stability under static storage and operation in a low-humidity air environment was demonstrated, with charge-carrier field-effect mobilities of 0.2-0.6 cm(2) V(-1) s(-1) achieved under nitrogen.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                May 21 2019
                May 2019
                December 13 2018
                May 2019
                : 29
                : 21
                : 1807033
                Affiliations
                [1 ]Department of Chemistry and Centre for Plastic ElectronicsImperial College London London SW7 2AZ UK
                [2 ]King Abdullah University of Science and Technology (KAUST)Physical Sciences and Engineering DivisionKAUST Solar Center (KSC) Thuwal 23955‐6900 Saudi Arabia
                Article
                10.1002/adfm.201807033
                6dec4cb6-537b-46d3-956f-23a6d2212f19
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article