12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Selected Chemokines and Their Receptors in the Development of Gliomas

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemokines: a new classification system and their role in immunity.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CCR7 and its ligands: balancing immunity and tolerance.

              A key feature of the immune system is its ability to induce protective immunity against pathogens while maintaining tolerance towards self and innocuous environmental antigens. Recent evidence suggests that by guiding cells to and within lymphoid organs, CC-chemokine receptor 7 (CCR7) essentially contributes to both immunity and tolerance. This receptor is involved in organizing thymic architecture and function, lymph-node homing of naive and regulatory T cells via high endothelial venules, as well as steady state and inflammation-induced lymph-node-bound migration of dendritic cells via afferent lymphatics. Here, we focus on the cellular and molecular mechanisms that enable CCR7 and its two ligands, CCL19 and CCL21, to balance immunity and tolerance.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                24 May 2020
                May 2020
                : 21
                : 10
                : 3704
                Affiliations
                [1 ]Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; magdalena.groblewska@ 123456umb.edu.pl
                [2 ]Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland; ala.litman-zawadzka@ 123456umb.edu.pl
                Author notes
                [* ]Correspondence: mroczko@ 123456umb.edu.pl ; Tel.: +48-85-831-8785
                Author information
                https://orcid.org/0000-0002-4075-8479
                Article
                ijms-21-03704
                10.3390/ijms21103704
                7279280
                32456359
                6de5021a-481a-4bf4-8542-e7d6c12b2227
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 April 2020
                : 22 May 2020
                Categories
                Review

                Molecular biology
                glioma,central nervous system tumor,chemokine,conventional chemokine receptor,atypical chemokine receptor,angiogenesis,inflammation,leukocyte

                Comments

                Comment on this article