14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review aims to inspire more researchers to explore potential energy and environmental applications of DESs and their derivatives.

          Abstract

          Deep eutectic solvents (DESs) are a large family of solvents that show many similarities with ionic liquids. They are distinguished by the presence of a large amount of molecular components (typically hydrogen bond donors). They are more industrially promising than ionic liquids due to their low cost and tolerance to humidity (hydrolysis or hygroscopicity). As an emerging research field, DESs have already received significant research attention from chemistry scientists. The exploration of DESs used for functional materials in energy and environmental applications is still in its early stage. This review briefly introduces the basics of DESs and how they could be promising as solvents for material scientists. We summarized the application of DESs for the synthesis of materials used for energy and environmental applications. In this review, DESs have been described in view of the three main roles they play in the solution process of functional materials. Besides DESs being widely known as inert media or reactive reagents for the synthesis of materials, they can also be directly adopted as functional materials such as electrolytes for energy storage devices or as CO 2 adsorbents. The present review focused on several categories of functional materials including noble metals, porous carbonaceous materials, transition metal compounds, and DESs themselves, which are synthesized or derived from DESs for potential applications in the energy and environmental fields. DESs have been demonstrated to be effective in guiding the formation of functional materials with unique structures and properties. In particular, we introduced our work on exploring a DES-thermal synthesis strategy, in which the DES is used as a solvent as well as a reagent. Recent theoretical and experimental work for understanding the structural basis of DESs has also been summarized. This review article aims to inspire scientists to use DESs as a powerful tool to push the frontiers in the field of materials, energy, and environmental science.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: not found
          • Article: not found

          Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sodium and sodium-ion energy storage batteries

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity.

              Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2017
                2017
                : 5
                : 18
                : 8209-8229
                Affiliations
                [1 ]State Key Laboratory of Silicon Materials
                [2 ]Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province
                [3 ]School of Materials Science and Engineering
                [4 ]Zhejiang University
                [5 ]Hangzhou 310027
                Article
                10.1039/C7TA01659J
                6dbaed3f-27dd-4f80-95b5-5cca4d0eb32c
                © 2017
                History

                Comments

                Comment on this article