Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape

      , , ,
      Ecological Applications
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In arid regions throughout the world, shallow phreatic aquifers feed natural oases of much higher productivity than would be expected solely from local rainfall. In South America, the presence of well-developed Prosopis flexuosa woodlands in the Monte Desert region east of the Andes has puzzled scientists for decades. Today these woodlands provide crucial subsistence to local populations, including descendants of the indigenous Huarpes. We explore the vulnerability and importance of phreatic groundwater for the productivity of the region, comparing the contributions of local rainfall to that of remote mountain recharge that is increasingly being diverted for irrigated agriculture before it reaches the desert. We combined deep soil coring, plant measurements, direct water-table observations, and stable-isotopic analyses (2H and 18O) of meteoric, surface, and ground waters at three study sites across the region, comparing woodland stands, bare dunes, and surrounding shrublands. The isotopic composition of phreatic groundwaters (delta2H: -137 per thousand +/- 5 per thousand) closely matched the signature of water brought to the region by the Mendoza River (-137 per thousand +/- 6 per thousand), suggestin that mountain-river infiltration rather than in situ rainfall deep drainage (-39 per thousand +/- 19 per thousand) was the dominant mechanism of recharge. Similarly, chloride mass balances determined from deep soil profiles (> 6 m) suggested very low recharge rates. Vegetation in woodland ecosystems, where significant groundwater discharge losses, likely >100 mm/yr occurred, relied on regionally derived groundwater located from 6.5 to 9.5 m underground. At these locations, daily water-table fluctuations of 10 mm, and stable-isotopic measurements of plant water, indicated groundwater uptake rates of 200-300 mm/yr. Regional scaling suggests that groundwater evapotranspiration reaches 18-42 mm/yr across the landscape, accounting for 7 17% of the Mendoza River flow regionally. Our study highlights the reliance of ecosystem productivity in natural oases on Andean snowmelt, which is increasingly being diverted to one of the largest irrigated regions of the continent. Understanding the ecohydrological coupling of mountain and desert ecosystems here and elsewhere should help managers balance production agriculture and conservation of unique woodland ecosystems and the rural communities that rely on them.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          A high-resolution data set of surface climate over global land areas

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Maximum rooting depth of vegetation types at the global scale

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters.

              A standard, based on the set of ocean water samples used by Epstein and Mayeda to obtain a reference standard for oxygen-18 data, but defined relative to the National Bureau of Standards isotopic reference water sample, is proposed for reporting both deuterium and oxygen-18 variations in natural waters relative to the same water. The range of absolute concentrations of both isotopes in meteoric-waters is discussed.
                Bookmark

                Author and article information

                Journal
                Ecological Applications
                Ecological Applications
                Wiley-Blackwell
                1051-0761
                April 28 2011
                April 28 2011
                : 21
                : 3
                : 678-694
                Article
                10.1890/09-1427.1
                21639036
                6db9ec77-6e0e-4b19-9d48-07c98ab662eb
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,927

                Cited by40

                Most referenced authors646