1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Imaging the breakdown and restoration of topological protection in magnetic topological insulator MnBi\(_2\)Te\(_4\)

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum anomalous Hall (QAH) insulators transport charge without resistance along topologically protected chiral one-dimensional edge states. Yet, in magnetic topological insulators (MTI) to date, topological protection is far from robust, with the zero-magnetic field QAH effect only realised at temperatures an order of magnitude below the N\'eel temperature TN, though small magnetic fields can stabilize QAH effect. Understanding why topological protection breaks down is therefore essential to realising QAH effect at higher temperatures. Here we use a scanning tunnelling microscope to directly map the size of the exchange gap (Eg,ex) and its spatial fluctuation in the QAH insulator 5-layer MnBi\(_2\)Te\(_4\). We observe long-range fluctuations of Eg,ex with values ranging between 0 (gapless) and 70 meV, uncorrelated to individual point defects. We directly image the breakdown of topological protection, showing that the chiral edge state, the hallmark signature of a QAH insulator, hybridizes with extended gapless metallic regions in the bulk. Finally, we unambiguously demonstrate that the gapless regions originate in magnetic disorder, by demonstrating that a small magnetic field restores Eg,ex in these regions, explaining the recovery of topological protection in magnetic fields. Our results indicate that overcoming magnetic disorder is key to exploiting the unique properties of QAH insulators.

          Related collections

          Author and article information

          Journal
          16 January 2023
          Article
          2301.06667
          6db300ed-6369-4b8b-9570-5bde8b626199

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cond-mat.mtrl-sci cond-mat.mes-hall

          Condensed matter,Nanophysics
          Condensed matter, Nanophysics

          Comments

          Comment on this article