16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating the monophyly of Mammillaria series Supertextae (Cactaceae)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammillaria ( Cactaceae ) taxonomy has been historically problematic due to the morphological variability and sympatry of the species. This has led to several proposals for infrageneric classification, including subgeneric, section and series categories. Mammillaria ser. Supertextae is one of 15 series and is made up of a variable set of species that are mainly distributed in southern Mexico and Central America. However, the phylogenetic relationships within M. ser. Supertextae and its relationship to other Mammillaria taxa are far from fully understood. Here we attempt to elucidate these relationships using complete terminal sampling and newly obtained chloroplast marker sequences and comparing them to Mammillaria species sequences from GenBank. Our phylogenetic analyses showed that M. ser. Supertextae comprises a well-supported monophyletic group that diverged approximately 2.1 Mya and has M. ser. Polyacanthae as its sister group; however, relationships within M. ser. Supertextae remain unresolved. The topology obtained within M. ser. Supertextae must also be interpreted under the distribution shared by these taxa, but it is difficult to differentiate ancestral polymorphisms from possible introgression, given the short time elapsed and the markers used. Our results show that the infrageneric units of M. haageana and M. albilanata can be considered independent evolutionary units. We also suggest that the relationship between M. haageana and M. albilanata is convoluted because their distribution overlaps (mainly towards southern Mexico), with genetic differences that possibly indicate they represent more than two taxonomic entities. One possible explanation is that there could still be gene flow between these taxa, and we might be witnessing an ongoing speciation process.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

            Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space

              Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d N /d S rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: Writing - original draft
                Role: ConceptualizationRole: Writing - review-editing
                Role: Funding acquisitionRole: ResourcesRole: Writing - review-editing
                Role: ConceptualizationRole: Funding acquisitionRole: ResourcesRole: Writing - review-editing
                Role: ConceptualizationRole: Data curationRole: Funding acquisitionRole: ResourcesRole: Writing - review-editing
                Journal
                PhytoKeys
                PhytoKeys
                3
                urn:lsid:arphahub.com:pub:F7FCE910-8E78-573F-9C77-7788555F8AAD
                PhytoKeys
                Pensoft Publishers
                1314-2011
                1314-2003
                2021
                28 April 2021
                : 177
                : 25-42
                Affiliations
                [1 ] Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
                [2 ] Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
                [3 ] Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
                Author notes
                Corresponding author: Cristian R. Cervantes ( cristoichkov@ 123456gmail.com )

                Academic editor: Alice Calvente

                Author information
                https://orcid.org/0000-0001-6158-9099
                https://orcid.org/0000-0001-5088-2679
                https://orcid.org/0000-0002-7674-7050
                Article
                62915
                10.3897/phytokeys.177.62915
                8099837
                33967580
                6d9fdae0-424c-47b5-8b41-4dd8c2c41caf
                Cristian R. Cervantes, Silvia Hinojosa-Alvarez, Ana Wegier, Ulises Rosas, Salvador Arias

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 08 January 2021
                : 13 April 2021
                Categories
                Research Article
                Cactaceae
                Molecular Systematics
                Phylogeny
                Mexico

                Plant science & Botany
                bayesian inference, cactaceae ,chloroplast dna,mammillaria haageana,molecular phylogeny,m. ser. supertextae,taxonomy

                Comments

                Comment on this article

                scite_
                8
                2
                3
                0
                Smart Citations
                8
                2
                3
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content62

                Cited by3

                Most referenced authors599