0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex Difference in the Associations among Obesity-Related Indices with Hyperuricemia in a Large Taiwanese Population Study

      , , , , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperuricemia has been linked with the development of diabetes, gout, kidney, and cardiovascular diseases. Although obesity is associated with hyperuricemia, data on sex differences in this association are scarce. Therefore, this study was conducted to explore sex differences in the correlations among various indices of obesity with hyperuricemia in Taiwan. Data were obtained from the Taiwan Biobank and included 122,067 participants. After excluding 179 participants with missing data, the remaining 121,888 participants (men: 43,790; women: 78,098) were enrolled. The prevalence rates of hyperuricemia (defined as serum uric acid >7.0/6.0 mg/dL in men/women) were 29.8% and 13.6%, respectively (p < 0.001). Multivariable analysis revealed high values of body shape index (ABSI), waist-to-height ratio (WHtR), waist–hip ratio (WHR), lipid accumulation product (LAP), conicity index (CI), visceral adiposity index (VAI), body adiposity index (BAI), abdominal volume index (AVI), body mass index (BMI), and body roundness index (BRI) were significantly associated with hyperuricemia in both the male and female participants (all p < 0.001). The interactions between sex and all 10 of these indices were significant (all p < 0.001) for hyperuricemia. In men, LAP had the highest area under the curve (0.669), followed by BMI (0.655), VAI (0.645), AVI (0.642), BRI (0.640), WHtR (0.633), BAI (0.605), WHR (0.599), CI (0.574), and ABSI (0.510). In women, LAP also had the highest area under the curve (0.754), followed by BMI (0.728), VAI (0.724), WHtR (0.721), BRI (0.720), AVI (0.713), WHR (0.676), BAI (0.673), CI (0.626), and ABSI (0.544). In conclusion, obesity-related indices were associated with hyperuricemia in this large Taiwanese study, and sex differences were found in these associations, with stronger associations in women than in men.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology of obesity

          Obesity is a complex multifactorial disease. The worldwide prevalence of overweight and obesity has doubled since 1980 to an extent that nearly a third of the world's population is now classified as overweight or obese. Obesity rates have increased in all ages and both sexes irrespective of geographical locality, ethnicity or socioeconomic status, although the prevalence of obesity is generally greater in older persons and women. This trend was similar across regions and countries, although absolute prevalence rates of overweight and obesity varied widely. For some developed countries, the prevalence rates of obesity seem to have levelled off during the past few years. Body mass index (BMI) is typically used to define overweight and obesity in epidemiological studies. However, BMI has low sensitivity and there is a large inter-individual variability in the percent body fat for any given BMI value, partly attributed to age, sex, and ethnicity. For instance, Asians have greater percent body fat than Caucasians for the same BMI. Greater cardiometabolic risk has also been associated with the localization of excess fat in the visceral adipose tissue and ectopic depots (such as muscle and liver), as well as in cases of increased fat to lean mass ratio (e.g. metabolically-obese normal-weight). These data suggest that obesity may be far more common and requires more urgent attention than what large epidemiological studies suggest. Simply relying on BMI to assess its prevalence could hinder future interventions aimed at obesity prevention and control.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A More Accurate Method To Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index

              Background Obesity, typically quantified in terms of Body Mass Index (BMI) exceeding threshold values, is considered a leading cause of premature death worldwide. For given body size (BMI), it is recognized that risk is also affected by body shape, particularly as a marker of abdominal fat deposits. Waist circumference (WC) is used as a risk indicator supplementary to BMI, but the high correlation of WC with BMI makes it hard to isolate the added value of WC. Methods and Findings We considered a USA population sample of 14,105 non-pregnant adults ( ) from the National Health and Nutrition Examination Survey (NHANES) 1999–2004 with follow-up for mortality averaging 5 yr (828 deaths). We developed A Body Shape Index (ABSI) based on WC adjusted for height and weight: ABSI had little correlation with height, weight, or BMI. Death rates increased approximately exponentially with above average baseline ABSI (overall regression coefficient of per standard deviation of ABSI [95% confidence interval: – ]), whereas elevated death rates were found for both high and low values of BMI and WC. ( – ) of the population mortality hazard was attributable to high ABSI, compared to ( – ) for BMI and ( – ) for WC. The association of death rate with ABSI held even when adjusted for other known risk factors including smoking, diabetes, blood pressure, and serum cholesterol. ABSI correlation with mortality hazard held across the range of age, sex, and BMI, and for both white and black ethnicities (but not for Mexican ethnicity), and was not weakened by excluding deaths from the first 3 yr of follow-up. Conclusions Body shape, as measured by ABSI, appears to be a substantial risk factor for premature mortality in the general population derivable from basic clinical measurements. ABSI expresses the excess risk from high WC in a convenient form that is complementary to BMI and to other known risk factors.
                Bookmark

                Author and article information

                Contributors
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                August 2023
                August 01 2023
                : 15
                : 15
                : 3419
                Article
                10.3390/nu15153419
                10421218
                37571356
                6d6aa07d-05a9-4cf5-b21d-60d85eacd6dc
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article