7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NR4A1 and NR4A3 restrict HSC proliferation via reciprocal regulation of C/EBPα and inflammatory signaling

      ,
      Blood
      American Society of Hematology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d7340198e120"> <div class="list"> <a class="named-anchor" id="d7340198e122"> <!-- named anchor --> </a> <ul class="so-custom-list"> <li id="d7340198e123"> <div class="so-custom-list-content so-ol"> <p class="first" id="d7340198e124">NR4A1/3 nuclear receptors suppress hyperproliferation and DNA damage of HSCs.</p> </div> </li> <li id="d7340198e126"> <div class="so-custom-list-content so-ol"> <p class="first" id="d7340198e127">NR4A1/3 act as transcriptional activators of C/EBPα while repressing a proliferative inflammatory response in HSCs. </p> </div> </li> </ul> </div> </p><p class="first" id="d7340198e131">Members of the NR4A subfamily of nuclear receptors have complex, overlapping roles during hematopoietic cell development and also function as tumor suppressors of hematologic malignancies. We previously identified NR4A1 and NR4A3 (NR4A1/3) as functionally redundant suppressors of acute myeloid leukemia (AML) development. However, their role in hematopoietic stem cell (HSC) homeostasis remains to be disclosed. Using a conditional <i>Nr4a1</i>/ <i>Nr4a3</i> knockout mouse (CDKO), we show that codepletion of NR4A1/3 promotes acute changes in HSC homeostasis including loss of HSC quiescence, accumulation of oxidative stress, and DNA damage while maintaining stem cell regenerative and differentiation capacity. Molecular profiling of CDKO HSCs revealed widespread upregulation of genetic programs governing cell cycle and inflammation and an aberrant activation of the interferon and NF-κB signaling pathways in the absence of stimuli. Mechanistically, we demonstrate that NR4A1/3 restrict HSC proliferation in part through activation of a C/EBPα-driven antiproliferative network by directly binding to a hematopoietic-specific <i>Cebpa</i> enhancer and activating <i>Cebpa</i> transcription. In addition, NR4A1/3 occupy the regulatory regions of NF-κB-regulated inflammatory cytokines, antagonizing the activation of NF-κB signaling. Taken together, our results reveal a novel coordinate control of HSC quiescence by NR4A1/3 through direct activation of C/EBPα and suppression of activation of NF-κB-driven proliferative inflammatory responses. </p>

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          IFNalpha activates dormant haematopoietic stem cells in vivo.

          Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFNalpha), HSCs efficiently exit G(0) and enter an active cell cycle. HSCs respond to IFNalpha treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFNalpha target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFNalpha/beta receptor (IFNAR), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFNalpha stimulation, demonstrating that STAT1 and Sca-1 mediate IFNalpha-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil, HSCs pre-treated (primed) with IFNalpha and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFNalpha are functionally compromised and are rapidly out-competed by non-activatable Ifnar(-/-) cells in competitive repopulation assays. Whereas chronic activation of the IFNalpha pathway in HSCs impairs their function, acute IFNalpha treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFNalpha on leukaemic cells, and raise the possibility for new applications of type I interferons to target cancer stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute myeloid leukemia ontogeny is defined by distinct somatic mutations.

            Acute myeloid leukemia (AML) can develop after an antecedent myeloid malignancy (secondary AML [s-AML]), after leukemogenic therapy (therapy-related AML [t-AML]), or without an identifiable prodrome or known exposure (de novo AML). The genetic basis of these distinct pathways of AML development has not been determined. We performed targeted mutational analysis of 194 patients with rigorously defined s-AML or t-AML and 105 unselected AML patients. The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was >95% specific for the diagnosis of s-AML. Analysis of serial samples from individual patients revealed that these mutations occur early in leukemogenesis and often persist in clonal remissions. In t-AML and elderly de novo AML populations, these alterations define a distinct genetic subtype that shares clinicopathologic properties with clinically confirmed s-AML and highlights a subset of patients with worse clinical outcomes, including a lower complete remission rate, more frequent reinduction, and decreased event-free survival. This trial was registered at www.clinicaltrials.gov as #NCT00715637.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic interleukin-1 drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal

              Haematopoietic stem cells (HSC) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory ‘emergency’ signal, directly accelerates cell division and myeloid differentiation of HSCs via precocious activation of a PU.1-dependent gene program. While this effect is essential for rapid myeloid recovery following acute injury to the bone marrow (BM), chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges like transplantation. Importantly, these damaging effects are transient and fully reversible upon IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and likely underlies deregulated blood homeostasis in chronic inflammation conditions.
                Bookmark

                Author and article information

                Journal
                Blood
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                March 08 2018
                March 08 2018
                March 08 2018
                January 17 2018
                : 131
                : 10
                : 1081-1093
                Article
                10.1182/blood-2017-07-795757
                5863701
                29343483
                6d57275a-c585-487d-8bbb-4eea8a9e9d11
                © 2018
                History

                Comments

                Comment on this article