14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-HIV agent azidothymidine decreases Tet(X)-mediated bacterial resistance to tigecycline in Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent emergence of high-level tigecycline resistance mediated by Tet(X3/X4) in Enterobacteriaceae undoubtably constitutes a serious threat for public health worldwide. Antibiotic adjuvant strategy makes antibiotic more effective against these resistant pathogens through interfering intrinsic resistance mechanisms or enhancing antibiotic actions. Herein, we screened a collection of drugs to identify compounds that are able to restore tigecycline activity against resistant pathogens. Encouragingly, we discovered that anti-HIV agent azidothymidine dramatically potentiates tigecycline activity against clinically resistant bacteria. Meanwhile, addition of azidothymidine prevents the evolution of tigecycline resistance in E. coli and the naturally occurring horizontal transfer of tet(X4). Evidence demonstrated that azidothymidine specifically inhibits DNA synthesis and suppresses resistance enzyme activity. Moreover, in in vivo infection models by Tet(X4)-expression E. coli, the combination of azidothymidine and tigecycline achieved remarkable treatment benefits including increased survival and decreased bacterial burden. These findings provide an effective regimen to treat infections caused by tigecycline-resistant Escherichia coli.

          Abstract

          Yuan Liu et al. demonstrate that anti-HIV agent azidothymidine restores tigecycline’s activity against pathogens resistant to this antibiotic. This study suggests the combination of azidothymidine and tigecycline as an effective regimen to treat infections caused by tigecycline-resistant Escherichia coli.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle-based targeted drug delivery.

          Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the "nanometer" size range. These nano-sized objects, e.g., "nanoparticles", take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad((c)) nanoparticle formulation that has shown efficacy in treating solid tumors, single dose vaccination, and oral delivery of therapeutic proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drugs for bad bugs: confronting the challenges of antibacterial discovery.

            The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study.

              Not all patients infected with NDM-1-positive bacteria have a history of hospital admission in India, and extended-spectrum β-lactamases are known to be circulating in the Indian community. We therefore measured the prevalence of the NDM-1 gene in drinking water and seepage samples in New Delhi. Swabs absorbing about 100 μL of seepage water (ie, water pools in streets or rivulets) and 15 mL samples of public tap water were collected from sites within a 12 km radius of central New Delhi, with each site photographed and documented. Samples were transported to the UK and tested for the presence of the NDM-1 gene, bla(NDM-1), by PCR and DNA probing. As a control group, 100 μL sewage effluent samples were taken from the Cardiff Wastewater Treatment Works, Tremorfa, Wales. Bacteria from all samples were recovered and examined for bla(NDM-1) by PCR and sequencing. We identified NDM-1-positive isolates, undertook susceptibility testing, and, where appropriate, typed the isolates. We undertook Inc typing on bla(NDM-1)-positive plasmids. Transconjugants were created to assess plasmid transfer frequency and its relation to temperature. From Sept 26 to Oct 10, 2010, 171 seepage samples and 50 tap water samples from New Delhi and 70 sewage effluent samples from Cardiff Wastewater Treatment Works were collected. We detected bla(NDM-1) in two of 50 drinking-water samples and 51 of 171 seepage samples from New Delhi; the gene was not found in any sample from Cardiff. Bacteria with bla(NDM-1) were grown from 12 of 171 seepage samples and two of 50 water samples, and included 11 species in which NDM-1 has not previously been reported, including Shigella boydii and Vibrio cholerae. Carriage by enterobacteria, aeromonads, and V cholera was stable, generally transmissible, and associated with resistance patterns typical for NDM-1; carriage by non-fermenters was unstable in many cases and not associated with typical resistance. 20 strains of bacteria were found in the samples, 12 of which carried bla(NDM-1) on plasmids, which ranged in size from 140 to 400 kb. Isolates of Aeromonas caviae and V cholerae carried bla(NDM-1) on chromosomes. Conjugative transfer was more common at 30°C than at 25°C or 37°C. The presence of NDM-1 β-lactamase-producing bacteria in environmental samples in New Delhi has important implications for people living in the city who are reliant on public water and sanitation facilities. International surveillance of resistance, incorporating environmental sampling as well as examination of clinical isolates, needs to be established as a priority. European Union. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                liuyuan2018@yzu.edu.cn
                zqwang@yzu.edu.cn
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                3 April 2020
                3 April 2020
                2020
                : 3
                : 162
                Affiliations
                [1 ]GRID grid.268415.c, College of Veterinary Medicine, , Yangzhou University, ; Yangzhou, Jiangsu China
                [2 ]Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu China
                [3 ]GRID grid.268415.c, Institute of Comparative Medicine, , Yangzhou University, ; Yangzhou, Jiangsu China
                Author information
                http://orcid.org/0000-0002-9622-6471
                Article
                877
                10.1038/s42003-020-0877-5
                7125129
                32246108
                6d4bc201-eaea-41dc-ab7a-1b057060035b
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 October 2019
                : 6 March 2020
                Funding
                Funded by: This work was supported by the National Key Research and Development Program of China (2018YFA0903400 and 2016YFD0501310), Natural Science Foundation of Jiangsu Province of China (BK20190893), China Postdoctoral Science Foundation funded project (2019M651984) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Lift Engineering of Young Talents of Jiangsu Association for Science and Technology.
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                antimicrobials,drug screening
                antimicrobials, drug screening

                Comments

                Comment on this article