2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens

      , , , ,
      Pharmacological Reviews
      American Society for Pharmacology & Experimental Therapeutics (ASPET)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references397

          • Record: found
          • Abstract: found
          • Article: not found

          Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance.

          Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibiotics: past, present and future

            The first antibiotic, salvarsan, was deployed in 1910. In just over 100 years antibiotics have drastically changed modern medicine and extended the average human lifespan by 23 years. The discovery of penicillin in 1928 started the golden age of natural product antibiotic discovery that peaked in the mid-1950s. Since then, a gradual decline in antibiotic discovery and development and the evolution of drug resistance in many human pathogens has led to the current antimicrobial resistance crisis. Here we give an overview of the history of antibiotic discovery, the major classes of antibiotics and where they come from. We argue that the future of antibiotic discovery looks bright as new technologies such as genome mining and editing are deployed to discover new natural products with diverse bioactivities. We also report on the current state of antibiotic development, with 45 drugs currently going through the clinical trials pipeline, including several new classes with novel modes of action that are in phase 3 clinical trials. Overall, there are promising signs for antibiotic discovery, but changes in financial models are required to translate scientific advances into clinically approved antibiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antimicrobial Resistance: Implications and Costs

              Abstract Antimicrobial resistance (AMR) has developed as one of the major urgent threats to public health causing serious issues to successful prevention and treatment of persistent diseases. In spite of different actions taken in recent decades to tackle this issue, the trends of global AMR demonstrate no signs of slowing down. Misusing and overusing different antibacterial agents in the health care setting as well as in the agricultural industry are considered the major reasons behind the emergence of antimicrobial resistance. In addition, the spontaneous evolution, mutation of bacteria, and passing the resistant genes through horizontal gene transfer are significant contributors to antimicrobial resistance. Many studies have demonstrated the disastrous financial consequences of AMR including extremely high healthcare costs due to an increase in hospital admissions and drug usage. The literature review, which included articles published after the year 2012, was performed using Scopus, PubMed and Google Scholar with the utilization of keyword searches. Results indicated that the multifactorial threat of antimicrobial resistance has resulted in different complex issues affecting countries across the globe. These impacts found in the sources are categorized into three different levels: patient, healthcare, and economic. Although gaps in knowledge about AMR and areas for improvement are obvious, there is not any clearly understood progress to put an end to the persistent trends of antimicrobial resistance.
                Bookmark

                Author and article information

                Journal
                Pharmacological Reviews
                Pharmacol Rev
                American Society for Pharmacology & Experimental Therapeutics (ASPET)
                0031-6997
                1521-0081
                December 15 2023
                January 2024
                January 2024
                October 16 2023
                : 76
                : 1
                : 90-141
                Article
                10.1124/pharmrev.123.000863
                37845080
                6d26c0d0-01c4-4bb8-a8a7-eff0c07b4207
                © 2023
                History

                Comments

                Comment on this article