39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trading Capsule for Increased Cytotoxin Production: Contribution to Virulence of a Newly Emerged Clade of emm89 Streptococcus pyogenes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Strains of emm89 Streptococcus pyogenes have become one of the major causes of invasive infections worldwide in the last 10 years. We recently sequenced the genome of 1,125 emm89 strains and identified three major phylogenetic groups, designated clade 1, clade 2, and the epidemic clade 3. Epidemic clade 3 strains, which now cause the great majority of infections, have two distinct genetic features compared to clade 1 and clade 2 strains. First, all clade 3 organisms have a variant 3 nga promoter region pattern, which is associated with increased production of secreted cytolytic toxins SPN ( S. pyogenes NADase) and SLO (streptolysin O). Second, all clade 3 strains lack the hasABC locus mediating hyaluronic acid capsule synthesis, whereas this locus is intact in clade 1 and clade 2 strains. We constructed isogenic mutant strains that produce different levels of SPN and SLO toxins and capsule (none, low, or high). Here we report that emm89 strains with elevated toxin production are significantly more virulent than low-toxin producers. Importantly, we also show that capsule production is dispensable for virulence in strains that already produce high levels of SPN and SLO. Our results provide new understanding about the molecular mechanisms contributing to the rapid emergence and molecular pathogenesis of epidemic clade 3 emm89 S. pyogenes.

          IMPORTANCE

          S. pyogenes (group A streptococcus [GAS]) causes pharyngitis (“strep throat”), necrotizing fasciitis, and other human infections. Serious infections caused by emm89 S. pyogenes strains have recently increased in frequency in many countries. Based on whole-genome sequence analysis of 1,125 strains recovered from patients on two continents, we discovered that a new emm89 clone, termed clade 3, has two distinct genetic features compared to its predecessors: (i) absence of the genes encoding antiphagocytic hyaluronic acid capsule virulence factor and (ii) increased production of the secreted cytolytic toxins SPN and SLO. emm89 S. pyogenes strains with the clade 3 phenotype (absence of capsule and high expression of SPN and SLO) are highly virulent in mice. These findings provide new understanding of how new virulent clones emerge and cause severe infections worldwide. This newfound knowledge of S. pyogenes virulence can be used to help understand future epidemics and conduct new translational research.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Global emm type distribution of group A streptococci: systematic review and implications for vaccine development.

          emm sequence typing is the most widely used method for defining group A streptococcal (GAS) strains, and has been applied to isolates in all regions of the world. We did a systematic review of the global distribution of GAS emm types. 102 articles and reports were included (38 081 isolates). Epidemiological data from high-income countries were predominant, with sparse data from low-income countries. The epidemiology of GAS disease in Africa and the Pacific region seems to be different from that in other regions, particularly high-income countries. In Africa and the Pacific, there were no dominant emm types, a higher diversity of emm types, and many of the common emm types in other parts of the world were less common (including emm 1, 4, 6, and 12). Our data have implications for the development of GAS vaccines. On the basis of the available data, the current formulation of the experimental multivalent emm vaccine would provide good coverage in high-income countries, particularly USA, Canada, and Europe, but poor coverage in Africa and the Pacific, and only average coverage in Asia and the Middle East.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-Wide Analysis of Group A Streptococci Reveals a Mutation That Modulates Global Phenotype and Disease Specificity

            Introduction Bacterial pathogens have long been recognized to undergo phenotypic variation (reviewed in [1]). Historically, interest in this phenomenon has been fueled by the observation that phenotypic variants can differ in pathogenesis characteristics, such as increased or decreased virulence, or adaptation to a particular anatomic site. Extensive work has been directed at elucidating the molecular genetic events that contribute to phenotypic variation, with antigenic variation being the best-studied category. With few exceptions, most studies have focused on analysis of a distinct phenotype such as adhesin production or lipooligosaccharide structural modification. Several molecular mechanisms have been documented to contribute to phenotypic variation, the most common being slipped-strand mispairing events that result in phase-variable expression of the associated gene [1]. The group A streptococci (GAS) cause many distinct human infections [2]. Disease manifestations range from mild infections such as pharyngitis (“strep throat”) and impetigo, to extensive tissue destruction in the case of necrotizing fasciitis (the “flesh-eating” syndrome). Postinfection sequelae such as rheumatic fever and glomerulonephritis can also occur. The mechanisms that enable GAS to cause diverse diseases are unknown, although both bacterial and host-specific components are thought to be involved [3]. Associated morphologic and virulence variation in GAS has been known for almost 90 y [4,5]. Classic studies identified GAS phenotypic variation during invasive and upper respiratory tract infections [4,6]. More recently, correlations have been reported between the source of GAS clinical isolates and their ability to invade human epithelial cells or secrete high concentrations of virulence factors such as streptococcal pyrogenic exotoxin A, B, and C (SpeA, SpeB, and SpeC), or streptolysin O (SLO) [7–9]. Such correlations have been observed for multiple GAS serotypes, including clonal contemporary serotype M1 GAS [10]. The idea that GAS phenotypic heterogeneity contributes to distinct disease manifestations is supported by the identification of inherited alterations in virulence factor production when GAS is passaged in human blood ex vivo or through mice [5,11–14]. Virulence factor production by GAS is regulated by stand-alone transcription factors and two-component signal transduction systems (TCSs) [15]. Thirteen TCSs have been described in GAS, of which the CovRS system (also known as CsrRS) is the best characterized. CovRS is a negative regulatory TCS that directly or indirectly influences expression of 10% to 15% of GAS genes, including several virulence factors [16–21]. Despite these advances, we have an imprecise understanding of the contribution of phenotypic variation to host–pathogen interactions in GAS, and the molecular mechanism(s) controlling this heterogeneity. Recently, genome-wide investigative strategies have been used successfully to provide new information about GAS population genetics, evolution, and pathogenesis [22]. Inasmuch as phenotypic variation in GAS may be a key component of the pathogen life cycle, we chose to investigate this phenomenon using genome-wide analytic strategies, including transcriptome profiling and genome resequencing. Here we report genome, transcriptome, and partial secretome differences that distinguish GAS isolated from invasive and pharyngeal infections and permit a heretofore unattainable understanding of phenotypic variation in a microbial pathogen. Results Transcriptome-Based Grouping of Serotype M1 GAS Strains The transcriptomes of nine contemporary (post-1987) serotype M1 GAS strains grown to early exponential phase in Todd-Hewitt broth with yeast extract (THY) were analyzed with an Affymetrix expression microarray. These nine strains included six from patients with pharyngitis and three from invasive disease episodes and were selected from approximately 2,000 genetically characterized serotype M1 strains [10]. Two very distinct transcriptome clusters were identified based on analysis of the microarray data (Figure 1A). The three invasive isolates formed one cluster termed an invasive transcriptome profile (ITP), and the six pharyngitis isolates formed a second cluster termed a pharyngeal transcriptome profile (PTP). The data imply that GAS strains cultured from patients with pharyngeal and invasive disease have distinct transcriptomes, which are retained upon in vitro growth. Analysis of differential gene expression between the two transcriptome profiles identified 89 genes that were statistically significant (t-test followed by a false discovery rate correction, Q 2-fold by ITP strains are colored red. Virulence factors/regulators transcribed >2-fold by PTP strains are colored blue. The emm gene, encoding the important virulence factor M protein, is highlighted yellow for reference. (155 KB PPT) Click here for additional data file. Figure S2 Schematic of Experiment Leading to Isolation of Mouse-Passaged GAS Derivatives PTP GAS (blue box, nonmucoid) or ITP GAS (red box, mucoid) were injected subcutaneously into mice. Five days after infection mice were euthanized and GAS isolated from spleens and skin lesions. ITP GAS were isolated from the spleens and skin lesions of all infected mice. GAS recovered from skin lesions of mice infected with PTP GAS had an approximately 1:1 ratio of ITP to PTP GAS. (9.2 MB PPT) Click here for additional data file. Figure S3 ITP Strains Secrete Increased NADase Activity Compared to PTP Strains NADase titers are shown on the y-axis, with different GAS strains shown on the x-axis. Color coding is as described for Figure 2B. The experiment was performed in duplicate and results identical to those shown were obtained on both occasions. NEG, negative controls. (29 KB PPT) Click here for additional data file. Figure S4 Correlation of Microarray Data between ITP/PTP GAS Isolated from Clinical Sources and following Mouse Passage The fold change in transcript levels (ITP relative to PTP) of 24 virulence-related genes from the clinical GAS microarray (Figure 1) and the mouse-passaged GAS microarray (Figure 2) were log-transformed and plotted against each other to evaluate their correlation. (44 KB PPT) Click here for additional data file. Protocol S1 Comparative Genomic Resequencing (27 KB DOC) Click here for additional data file. Table S1 Serotype M1 Group A Streptococcus Isolates Studied (95 KB DOC) Click here for additional data file. Accession Numbers Expression microarray data have been deposited at the Gene Expression Omnibus database at National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo) and are accessible through accession numbers GSE3899 and GSE3900. The GenBank (http://www.ncbi.nlm.nih.gov) accession number for the whole genome sequence of strain MGAS5005 is CP000017.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000-2004.

              Invasive group A Streptococcus (GAS) infection causes significant morbidity and mortality in the United States. We report the current epidemiologic characteristics of invasive GAS infections and estimate the potential impact of a multivalent GAS vaccine. From January 2000 through December 2004, we collected data from Centers for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs), a population-based system operating at 10 US sites (2004 population, 29.7 million). We defined a case of invasive GAS disease as isolation of GAS from a normally sterile site or from a wound specimen obtained from a patient with necrotizing fasciitis or streptococcal toxic shock syndrome in a surveillance area resident. All available isolates were emm typed. We used US census data to calculate rates and to make age- and race-adjusted national projections. We identified 5400 cases of invasive GAS infection (3.5 cases per 100,000 persons), with 735 deaths (case-fatality rate, 13.7%). Case-fatality rates for streptococcal toxic shock syndrome and necrotizing fasciitis were 36% and 24%, respectively. Incidences were highest among elderly persons (9.4 cases per 100,000 persons), infants (5.3 cases per 100,000 persons), and black persons (4.7 cases per 100,000 persons) and were stable over time. We estimate that 8950-11,500 cases of invasive GAS infection occur in the United States annually, resulting in 1050-1850 deaths. The emm types in a proposed 26-valent vaccine accounted for 79% of all cases and deaths. Independent factors associated with death include increasing age; having streptococcal toxic shock syndrome, meningitis, necrotizing fasciitis, pneumonia, or bacteremia; and having emm types 1, 3, or 12. GAS remains an important cause of severe disease in the United States. The introduction of a vaccine could significantly reduce morbidity and mortality due to these infections.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                6 October 2015
                Sep-Oct 2015
                : 6
                : 5
                : e01378-15
                Affiliations
                [a ]Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
                [b ]Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
                [c ]Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, México
                Author notes
                Address correspondence to James M. Musser, jmmusser@ 123456houstonmethodist.org .

                Editor Eric J. Rubin, Harvard School of Public Health

                This article is a direct contribution from a Fellow of the American Academy of Microbiology.

                Article
                mBio01378-15
                10.1128/mBio.01378-15
                4611041
                26443457
                6d01fdf1-b74e-4c7c-b5b4-e5905d0501b5
                Copyright © 2015 Zhu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 August 2015
                : 10 September 2015
                Page count
                supplementary-material: 0, Figures: 6, Tables: 3, Equations: 0, References: 38, Pages: 10, Words: 6758
                Categories
                Research Article
                Custom metadata
                September/October 2015

                Life sciences
                Life sciences

                Comments

                Comment on this article

                scite_

                Similar content145

                Cited by42

                Most referenced authors372