14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant-based diets, defined here as including both vegan and lacto-ovo-vegetarian diets, are growing in popularity throughout the Western world for various reasons, including concerns for human health and the health of the planet. Plant-based diets are more environmentally sustainable than meat-based diets and have a reduced environmental impact, including producing lower levels of greenhouse gas emissions. Dietary guidelines are normally formulated to enhance the health of society, reduce the risk of chronic diseases, and prevent nutritional deficiencies. We reviewed the scientific data on plant-based diets to summarize their preventative and therapeutic role in cardiovascular disease, cancer, diabetes, obesity, and osteoporosis. Consuming plant-based diets is safe and effective for all stages of the life cycle, from pregnancy and lactation, to childhood, to old age. Plant-based diets, which are high in fiber and polyphenolics, are also associated with a diverse gut microbiota, producing metabolites that have anti-inflammatory functions that may help manage disease processes. Concerns about the adequate intake of a number of nutrients, including vitamin B12, calcium, vitamin D, iron, zinc, and omega-3 fats, are discussed. The use of fortified foods and/or supplements as well as appropriate food choices are outlined for each nutrient. Finally, guidelines are suggested for health professionals working with clients consuming plant-based diets.

          Related collections

          Most cited references305

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association

            The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year’s worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year’s edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linking long-term dietary patterns with gut microbial enterotypes.

              Diet strongly affects human health, partly by modulating gut microbiome composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). A controlled-feeding study of 10 subjects showed that microbiome composition changed detectably within 24 hours of initiating a high-fat/low-fiber or low-fat/high-fiber diet, but that enterotype identity remained stable during the 10-day study. Thus, alternative enterotype states are associated with long-term diet.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                November 2021
                November 19 2021
                : 13
                : 11
                : 4144
                Article
                10.3390/nu13114144
                34836399
                6cfaebf0-a89e-4fb0-a69c-9aff3de9fab1
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article