5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating the Origin of Mycobacterium chimaera Contamination in Heater-Cooler Units: Integrated Analysis with Fourier Transform Infrared Spectroscopy and Whole-Genome Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Mycobacterium chimaera is ubiquitously spread in the environment, including factory and hospital water systems. Invasive cases of M. chimaera infection have been associated with aerosols produced by the use of heater-cooler units (HCU) during cardiac surgery. The aim of this study was to evaluate for the first time the performance of IR-Biotyper system on a large number of M. chimaera isolates collected from longitudinal environmental HCUs samples and water sources from hospitals located in three Italian provinces. In addition, IR-Biotyper results were compared with whole-genome sequencing (WGS) analysis, the reference method for molecular epidemiology, to investigate the origin of M. chimaera contamination of HCUs. From November 2018 to May 2021, 417 water samples from 52 HCUs (Stockert 3T, n = 41 and HCU40, n = 11) and 23 hospital taps (used to fill the HCU tanks) were concentrated, decontaminated, and cultured for M. chimaera. Positive cultures ( n = 53) were purified by agar plate subcultures and analyzed by IR-Biotyper platform and Ion Torrent sequencing system. IR-Biotyper spectra results were analyzed using a statistical approach of dimensionality reduction by linear discriminant analysis (LDA), generating three separate clusters of M. chimaera, ascribable to each hospital. Furthermore, the only M. chimaera-positive sample from tap water clustered with the isolates from the HCUs of the same hospital, confirming that the plumbing system could represent the source of HCU contamination and, potentially, of patient infection. According to the genome-based phylogenies and following the classification proposed by van Ingen and collaborators in 2017, three distinct M. chimaera groups appear to have contaminated the HCU water systems: subgroups 1.1, 2.1, and branch 2. Most of the strains isolated from HCUs at the same hospital share a highly similar genetic profile. The nonrandom distribution obtained with WGS and IR-Biotyper leads to the hypothesis that M. chimaera subtypes circulating in the local plumbing colonize HCUs through the absolute filter, in addition with the current hypothesis that contamination occurs at the HCU production site. This opens the possibility that other medical equipment, such as endoscope reprocessing device or hemodialysis systems, could be contaminated by M. chimaera.

          IMPORTANCE Our manuscript focuses on interventions to reduce waterborne disease transmission, improve sanitation, and control infection. Sanitary water can be contaminated by nontuberculous Mycobacteria, including M. chimaera, a causative agent of invasive infections in immunocompromised patients. We found highly similar genetic and phenotypic profiles of M. chimaera isolated from heater-cooler units (HCU) used during surgery to thermo-regulate patients' body temperature, and from the same hospital tap water. These results lead to the hypothesis that M. chimaera subtypes circulating in the local plumbing colonize HCUs through the absolute filter, adding to the current hypothesis that contamination occurs at the HCU production site. In addition, this opens the possibility that other medical equipment using sanitized water, such as endoscope reprocessing devices or hemodialysis systems, could be contaminated by nontuberculous Mycobacteria, suggesting the need for environmental surveillance and associated control measures.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

            Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments

              Background We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability. Methodology/Principal Findings Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the “CAT” approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100–1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory. Conclusions/Significance FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Microbiol Spectr
                Microbiol Spectr
                spectrum
                Microbiology Spectrum
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2165-0497
                12 October 2022
                Nov-Dec 2022
                12 October 2022
                : 10
                : 6
                : e02893-22
                Affiliations
                [a ] Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
                [b ] Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
                [c ] UOC Microbiology and Bio-repository, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
                [d ] UOS Technical Health Professions, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
                [e ] Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
                University Paris-Saclay, AP-HP hospital Antoine Béclere, Service de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS
                Author notes

                F. Bisognin and F. Messina contributed equally to this work. Author order was determined alphabetically.

                A. Cannas and P. Dal Monte also contributed equally to this work. Author order was determined alphabetically.

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0000-0002-3254-9239
                https://orcid.org/0000-0002-5084-2615
                https://orcid.org/0000-0003-2326-7464
                Article
                02893-22 spectrum.02893-22
                10.1128/spectrum.02893-22
                9769643
                36222693
                6cd9145c-f78d-4ae6-829c-ac437f8eddb2
                Copyright © 2022 Bisognin et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 26 July 2022
                : 20 September 2022
                Page count
                supplementary-material: 0, Figures: 3, Tables: 2, Equations: 0, References: 32, Pages: 10, Words: 6137
                Categories
                Research Article
                mycobacteriology, Mycobacteriology
                Custom metadata
                November/December 2022

                absolute filter,heater-cooler units,ir-biotyper,mycobacterium chimaera,nontuberculous mycobacteria,whole-genome sequencing

                Comments

                Comment on this article