2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MolCompass: multi-tool for the navigation in chemical space and visual validation of QSAR/QSPR models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exponential growth of data is challenging for humans because their ability to analyze data is limited. Especially in chemistry, there is a demand for tools that can visualize molecular datasets in a convenient graphical way. We propose a new, ready-to-use, multi-tool, and open-source framework for visualizing and navigating chemical space. This framework adheres to the low-code/no-code (LCNC) paradigm, providing a KNIME node, a web-based tool, and a Python package, making it accessible to a broad cheminformatics community. The core technique of the MolCompass framework employs a pre-trained parametric t-SNE model. We demonstrate how this framework can be adapted for the visualisation of chemical space and visual validation of binary classification QSAR/QSPR models, revealing their weaknesses and identifying model cliffs. All parts of the framework are publicly available on GitHub, providing accessibility to the broad scientific community.

          Scientific contribution

          We provide an open-source, ready-to-use set of tools for the visualization of chemical space. These tools can be insightful for chemists to analyze compound datasets and for the visual validation of QSAR/QSPR models.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principal component analysis: a review and recent developments.

            Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori, hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extended-connectivity fingerprints.

              Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular characterization. Historically, topological fingerprints were developed for substructure and similarity searching. ECFPs were developed specifically for structure-activity modeling. ECFPs are circular fingerprints with a number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent an essentially infinite number of different molecular features (including stereochemical information); their features represent the presence of particular substructures, allowing easier interpretation of analysis results; and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for different uses. While the use of ECFPs has been widely adopted and validated, a description of their implementation has not previously been presented in the literature.
                Bookmark

                Author and article information

                Contributors
                sergey.sosnin@univie.ac.at
                Journal
                J Cheminform
                J Cheminform
                Journal of Cheminformatics
                Springer International Publishing (Cham )
                1758-2946
                12 August 2024
                12 August 2024
                2024
                : 16
                : 98
                Affiliations
                Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, ( https://ror.org/03prydq77) Josef-Holaubek-Platz 2, 1090 Vienna, Austria
                Article
                888
                10.1186/s13321-024-00888-z
                11318166
                39129016
                6cd498b2-d5df-4a03-8352-066c3daf58d1
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 March 2024
                : 21 July 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010663, H2020 European Research Council;
                Award ID: No. 964537 (RISK-HUNT3R)
                Award Recipient :
                Categories
                Software
                Custom metadata
                © Springer Nature Switzerland AG 2024

                Chemoinformatics
                chemical space visualization,clustering,applicability domain,visual validation,chemoinformatics,qsar/qspr modelling

                Comments

                Comment on this article