Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistent Breeding-Induced Endometritis in Mares—A Multifaceted Challenge: From Clinical Aspects to Immunopathogenesis and Pathobiology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-breeding endometritis (i.e., inflammation/infection of the endometrium), is a physiological reaction taking place in the endometrium of mares within 48 h post-breeding, aimed to clear seminal plasma, excess sperm, microorganisms, and debris from the uterine lumen in preparation for the arrival of an embryo. Mares are classified as susceptible or resistant to persistent breeding-induced endometritis (PBIE) based on their ability to clear this inflammation/infection by 48 h post-breeding. Mares susceptible to PBIE, or those with difficulty clearing infection/inflammation, have a deficient immune response and compromised physical mechanisms of defense against infection. Molecular pathways of the innate immune response known to be involved in PBIE are discussed herein. The role of the adaptive uterine immune response on PBIE remains to be elucidated in horses. Advances in the pathobiology of microbes involved in PBIE are also revised here. Traditional and non-traditional therapeutic modalities for endometritis are contrasted and described in the context of clinical and molecular aspects. In recent years, the lack of efficacy of traditional therapeutic modalities, alongside the ever-increasing incidence of antibiotic-resistant microorganisms, has enforced the development of non-traditional therapies. Novel biological products capable of modulating the endometrial inflammatory response are also discussed here as part of the non-traditional therapies for endometritis.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          IL-10 inhibits cytokine production by activated macrophages.

          IL-10 inhibits the ability of macrophage but not B cell APC to stimulate cytokine synthesis by Th1 T cell clones. In this study we have examined the direct effects of IL-10 on both macrophage cell lines and normal peritoneal macrophages. LPS (or LPS and IFN-gamma)-induced production of IL-1, IL-6, and TNF-alpha proteins was significantly inhibited by IL-10 in two macrophage cell lines. Furthermore, IL-10 appears to be a more potent inhibitor of monokine synthesis than IL-4 when added at similar concentrations. LPS or LPS- and IFN-gamma-induced expression of IL-1 alpha, IL-6, or TNF-alpha mRNA was also inhibited by IL-10 as shown by semiquantitative polymerase chain reaction or Northern blot analysis. Inhibition of LPS-induced IL-6 secretion by IL-10 was less marked in FACS-purified peritoneal macrophages than in the macrophage cell lines. However, IL-6 production by peritoneal macrophages was enhanced by addition of anti-IL-10 antibodies, implying the presence in these cultures of endogenous IL-10, which results in an intrinsic reduction of monokine synthesis after LPS activation. Consistent with this proposal, LPS-stimulated peritoneal macrophages were shown to directly produce IL-10 detectable by ELISA. Furthermore, IFN-gamma was found to enhance IL-6 production by LPS-stimulated peritoneal macrophages, and this could be explained by its suppression of IL-10 production by this same population of cells. In addition to its effects on monokine synthesis, IL-10 also induces a significant change in morphology in IFN-gamma-stimulated peritoneal macrophages. The potent action of IL-10 on the macrophage, particularly at the level of monokine production, supports an important role for this cytokine not only in the regulation of T cell responses but also in acute inflammatory responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate immune recognition: mechanisms and pathways.

            The innate immune system is an evolutionarily ancient form of host defense found in most multicellular organisms. Inducible responses of the innate immune system are triggered upon pathogen recognition by a set of pattern recognition receptors. These receptors recognize conserved molecular patterns shared by large groups of microorganisms. Recognition of these patterns allows the innate immune system not only to detect the presence of an infectious microbe, but also to determine the type of the infecting pathogen. Pattern recognition receptors activate conserved host defense signaling pathways that control the expression of a variety of immune response genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo.

              Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 February 2020
                February 2020
                : 21
                : 4
                : 1432
                Affiliations
                [1 ]Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA; lgseg@ 123456hotmail.com
                [2 ]Department of Animal Reproduction and Veterinary Radiology, Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-000, São Paulo, Brazil
                [3 ]The Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA; carleigh.fedorka@ 123456uky.edu
                Author notes
                [* ]Correspondence: canisso@ 123456illinois.edu ; Tel.: +1-2172809040
                Article
                ijms-21-01432
                10.3390/ijms21041432
                7073041
                32093296
                6cc897f3-082a-4c7f-b62e-c8898be2f448
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 December 2019
                : 07 February 2020
                Categories
                Review

                Molecular biology
                subfertility,uterine infection,horses,inflammation,endometrium
                Molecular biology
                subfertility, uterine infection, horses, inflammation, endometrium

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content194

                Cited by27

                Most referenced authors3,911