Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog ( CRB)-based gene augmentation.

          Related collections

          Most cited references278

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Non-syndromic retinitis pigmentosa

          Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway.

            The Hippo pathway senses cell density information to control tissue growth by regulating the localization of the transcriptional regulators TAZ and YAP (TAZ/YAP). TAZ/YAP also regulate TGF-β-SMAD signaling, but whether this role is linked to cell density sensing is unknown. Here we demonstrate that TAZ/YAP dictate the localization of active SMAD complexes in response to cell density-mediated formation of polarity complexes. In high-density cell cultures, the Hippo pathway drives cytoplasmic localization of TAZ/YAP, which sequesters SMAD complexes, thereby suppressing TGF-β signaling. We show that during mouse embryogenesis, this is reflected by differences in TAZ/YAP localization, which define regions of active SMAD2/3 complexes. Interfering with TAZ/YAP phosphorylation drives nuclear accumulation of TAZ/YAP and SMAD2/3. Furthermore, we demonstrate that the Crumbs polarity complex interacts with TAZ/YAP, which relays cell density information by promoting TAZ/YAP phosphorylation, cytoplasmic retention, and suppressed TGF-β signaling. Accordingly, disruption of the Crumbs complex enhances TGF-β signaling and predisposes cells to TGF-β-mediated epithelial-to-mesenchymal transitions. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pax6 is required for the multipotent state of retinal progenitor cells.

              The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                29 November 2019
                December 2019
                : 10
                : 12
                : 987
                Affiliations
                [1 ]Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; pq2138@ 123456cumc.columbia.edu
                [2 ]The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
                Author notes
                [* ]Correspondence: J.Wijnholds@ 123456lumc.nl ; Tel.: +31-71-526-9269
                Author information
                https://orcid.org/0000-0001-9940-4264
                https://orcid.org/0000-0003-0099-460X
                Article
                genes-10-00987
                10.3390/genes10120987
                6947654
                31795518
                6cb563e4-12d8-4791-a269-963b835aade2
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 August 2019
                : 26 November 2019
                Categories
                Review

                apical polarity,crumbs complex,fetal retina,par complex,retinal organoids,retinogenesis,gene augmentation,adeno-associated virus (aav),leber congenital amaurosis

                Comments

                Comment on this article