41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma

          Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis and metastasis. Curcumin has shown anti-proliferative effect in multiple cancers, and is an inhibitor of the transcription factor NF-κB and downstream gene products (including c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF-α, interleukins and MMP-9). In addition, curcumin affects a variety of growth factor receptors and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and treatment protocols include disfiguring surgery, platinum-based chemotherapy and radiation, all of which may result in tremendous patient morbidity. As a result, there is significant interest in developing adjuvant chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo data supporting its therapeutic activity in head and neck cancer as well as some of the challenges concerning its development as an adjuvant chemotherapeutic agent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia.

            Curcumin is derived from the spice tumeric and has antiinflammatory and antineoplastic effects in vitro and in animal models, including preventing aberrant crypt foci (ACF) and adenomas in murine models of colorectal carcinogenesis. Inhibiting the production of the procarcinogenic eicosanoids prostaglandin E₂ (PGE₂) and 5-hydroxyeicosatetraenoic acid (5-HETE) can suppress carcinogenesis in rodents. Curcumin reduces mucosal concentrations of PGE₂ (via inhibition of cyclooxygenases 1 and 2) and 5-HETE (via inhibition of 5-lipoxygenase) in rats. Although preclinical data support curcumin activity in many sites, the poor bioavailability reported for this agent supports its use in the colorectum. We assessed the effects of oral curcumin (2 g or 4 g per day for 30 days) on PGE₂ within ACF (primary endpoint), 5-HETE, ACF number, and proliferation in a nonrandomized, open-label clinical trial in 44 eligible smokers with eight or more ACF on screening colonoscopy. We assessed pre- and posttreatment concentrations of PGE₂ and 5-HETE by liquid chromatography tandem mass spectroscopy in ACF and normal-tissue biopsies; ACF number via rectal endoscopy; proliferation by Ki-67 immunohistochemistry; and curcumin concentrations by high-performance liquid chromatography in serum and rectal mucosal samples. Forty-one subjects completed the study. Neither dose of curcumin reduced PGE₂ or 5-HETE within ACF or normal mucosa or reduced Ki-67 in normal mucosa. A significant 40% reduction in ACF number occurred with the 4-g dose (P < 0.005), whereas ACF were not reduced in the 2-g group. The ACF reduction in the 4-g group was associated with a significant, five-fold increase in posttreatment plasma curcumin/conjugate levels (versus pretreatment; P = 0.009). Curcumin was well tolerated at both 2 g and 4 g. Our data suggest that curcumin can decrease ACF number, and this is potentially mediated by curcumin conjugates delivered systemically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics.

              The phytochemical resveratrol has undergone extensive preclinical investigation for its putative cancer chemopreventive properties. Low systemic availability of the parent compound due to rapid and extensive metabolism may confound its usefulness as a potential agent to prevent malignancies in organs remote from the site of absorption. Micronization allows increased drug absorption, thus increasing availability. Here we describe a pilot study of SRT501, micronized resveratrol, given as 5.0 g daily for 14 days, to patients with colorectal cancer and hepatic metastases scheduled to undergo hepatectomy. The purpose of the study was to assess the safety, pharmacokinetics, and pharmacodynamics of the formulation. SRT501 was found to be well tolerated. Mean plasma resveratrol levels following a single dose of SRT501 administration were 1,942 ± 1,422 ng/mL, exceeding those published for equivalent doses of nonmicronized resveratrol by 3.6-fold. Resveratrol was detectable in hepatic tissue following SRT501 administration (up to 2,287 ng/g). Cleaved caspase-3, a marker of apoptosis, significantly increased by 39% in malignant hepatic tissue following SRT501 treatment compared with tissue from the placebo-treated patients. SRT501 warrants further clinical exploration to assess its potential clinical utility. ©2011 AACR.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                28 January 2020
                2019
                : 10
                : 1614
                Affiliations
                [1] 1 Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory , Pune, India
                [2] 2 Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University , Pune, India
                [3] 3 Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University , Pune, India
                [4] 4 Innovation Biologicals Pvt. Ltd. , Pune, India
                [5] 5 Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans, LA, United States
                [6] 6 Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center , New Orleans, LA, United States
                Author notes

                Edited by: Salvatore Salomone, University of Catania, Italy

                Reviewed by: Tin Khor, Emergent Biosolutions, United States; Ioana Berindan Neagoe, Iuliu Hațieganu University of Medicine and Pharmacy, Romania

                *Correspondence: Manasi Deshpande, manasi08@ 123456gmail.com

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2019.01614
                7025531
                32116665
                6c8164c5-11e4-45a2-8e2e-2bce3feb9651
                Copyright © 2020 Choudhari, Mandave, Deshpande, Ranjekar and Prakash

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 September 2019
                : 10 December 2019
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 132, Pages: 18, Words: 8437
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                phytochemicals,anticancer,preclinical,clinical,medicinal plants

                Comments

                Comment on this article