35
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patient Perspectives on the Usefulness of an Artificial Intelligence–Assisted Symptom Checker: Cross-Sectional Survey Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Patients are increasingly seeking Web-based symptom checkers to obtain diagnoses. However, little is known about the characteristics of the patients who use these resources, their rationale for use, and whether they find them accurate and useful.

          Objective

          The study aimed to examine patients’ experiences using an artificial intelligence (AI)–assisted online symptom checker.

          Methods

          An online survey was administered between March 2, 2018, through March 15, 2018, to US users of the Isabel Symptom Checker within 6 months of their use. User characteristics, experiences of symptom checker use, experiences discussing results with physicians, and prior personal history of experiencing a diagnostic error were collected.

          Results

          A total of 329 usable responses was obtained. The mean respondent age was 48.0 (SD 16.7) years; most were women (230/304, 75.7%) and white (271/304, 89.1%). Patients most commonly used the symptom checker to better understand the causes of their symptoms (232/304, 76.3%), followed by for deciding whether to seek care (101/304, 33.2%) or where (eg, primary or urgent care: 63/304, 20.7%), obtaining medical advice without going to a doctor (48/304, 15.8%), and understanding their diagnoses better (39/304, 12.8%). Most patients reported receiving useful information for their health problems (274/304, 90.1%), with half reporting positive health effects (154/302, 51.0%). Most patients perceived it to be useful as a diagnostic tool (253/301, 84.1%), as a tool providing insights leading them closer to correct diagnoses (231/303, 76.2%), and reported they would use it again (278/304, 91.4%). Patients who discussed findings with their physicians (103/213, 48.4%) more often felt physicians were interested (42/103, 40.8%) than not interested in learning about the tool’s results (24/103, 23.3%) and more often felt physicians were open (62/103, 60.2%) than not open (21/103, 20.4%) to discussing the results. Compared with patients who had not previously experienced diagnostic errors (missed or delayed diagnoses: 123/304, 40.5%), patients who had previously experienced diagnostic errors (181/304, 59.5%) were more likely to use the symptom checker to determine where they should seek care (15/123, 12.2% vs 48/181, 26.5%; P=.002), but they less often felt that physicians were interested in discussing the tool’s results (20/34, 59% vs 22/69, 32%; P=.04).

          Conclusions

          Despite ongoing concerns about symptom checker accuracy, a large patient-user group perceived an AI-assisted symptom checker as useful for diagnosis. Formal validation studies evaluating symptom checker accuracy and effectiveness in real-world practice could provide additional useful information about their benefit.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations

          Background The frequency of outpatient diagnostic errors is challenging to determine due to varying error definitions and the need to review data across multiple providers and care settings over time. We estimated the frequency of diagnostic errors in the US adult population by synthesising data from three previous studies of clinic-based populations that used conceptually similar definitions of diagnostic error. Methods Data sources included two previous studies that used electronic triggers, or algorithms, to detect unusual patterns of return visits after an initial primary care visit or lack of follow-up of abnormal clinical findings related to colorectal cancer, both suggestive of diagnostic errors. A third study examined consecutive cases of lung cancer. In all three studies, diagnostic errors were confirmed through chart review and defined as missed opportunities to make a timely or correct diagnosis based on available evidence. We extrapolated the frequency of diagnostic error obtained from our studies to the US adult population, using the primary care study to estimate rates of diagnostic error for acute conditions (and exacerbations of existing conditions) and the two cancer studies to conservatively estimate rates of missed diagnosis of colorectal and lung cancer (as proxies for other serious chronic conditions). Results Combining estimates from the three studies yielded a rate of outpatient diagnostic errors of 5.08%, or approximately 12 million US adults every year. Based upon previous work, we estimate that about half of these errors could potentially be harmful. Conclusions Our population-based estimate suggests that diagnostic errors affect at least 1 in 20 US adults. This foundational evidence should encourage policymakers, healthcare organisations and researchers to start measuring and reducing diagnostic errors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evaluation of symptom checkers for self diagnosis and triage: audit study

            Objective To determine the diagnostic and triage accuracy of online symptom checkers (tools that use computer algorithms to help patients with self diagnosis or self triage). Design Audit study. Setting Publicly available, free symptom checkers. Participants 23 symptom checkers that were in English and provided advice across a range of conditions. 45 standardized patient vignettes were compiled and equally divided into three categories of triage urgency: emergent care required (for example, pulmonary embolism), non-emergent care reasonable (for example, otitis media), and self care reasonable (for example, viral upper respiratory tract infection). Main outcome measures For symptom checkers that provided a diagnosis, our main outcomes were whether the symptom checker listed the correct diagnosis first or within the first 20 potential diagnoses (n=770 standardized patient evaluations). For symptom checkers that provided a triage recommendation, our main outcomes were whether the symptom checker correctly recommended emergent care, non-emergent care, or self care (n=532 standardized patient evaluations). Results The 23 symptom checkers provided the correct diagnosis first in 34% (95% confidence interval 31% to 37%) of standardized patient evaluations, listed the correct diagnosis within the top 20 diagnoses given in 58% (55% to 62%) of standardized patient evaluations, and provided the appropriate triage advice in 57% (52% to 61%) of standardized patient evaluations. Triage performance varied by urgency of condition, with appropriate triage advice provided in 80% (95% confidence interval 75% to 86%) of emergent cases, 55% (47% to 63%) of non-emergent cases, and 33% (26% to 40%) of self care cases (P<0.001). Performance on appropriate triage advice across the 23 individual symptom checkers ranged from 33% (95% confidence interval 19% to 48%) to 78% (64% to 91%) of standardized patient evaluations. Conclusions Symptom checkers had deficits in both triage and diagnosis. Triage advice from symptom checkers is generally risk averse, encouraging users to seek care for conditions where self care is reasonable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Consumer Mobile Health Apps: Current State, Barriers, and Future Directions.

              This paper discusses the current state, barriers, and future directions of consumer-facing applications (apps). There are currently more than 165,000 mobile health apps publicly available in major app stores, the vast majority of which are designed for patients. The top 2 categories are wellness management and disease management apps, whereas other categories include self-diagnosis, medication reminder, and electronic patient portal apps. Apps specific to physical medicine and rehabilitation also are reviewed. These apps have the potential to provide low-cost, around-the-clock access to high-quality, evidence-based health information to end users on a global scale. However, they have not yet lived up to their potential due to multiple barriers, including lack of regulatory oversight, limited evidence-based literature, and concerns of privacy and security. The future directions may consist of improving data integration into the health care system, an interoperable app platform allowing access to electronic health record data, cloud-based personal health record across health care networks, and increasing app prescription by health care providers. For consumer mobile health apps to fully contribute value to health care delivery and chronic disease management, all stakeholders within the ecosystem must collaborate to overcome the significant barriers.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                January 2020
                30 January 2020
                : 22
                : 1
                : e14679
                Affiliations
                [1 ] Center for Innovations in Quality, Effectiveness and Safety Michael E DeBakey Veterans Affairs Medical Center and Baylor College of Medicine Houston, TX United States
                [2 ] Department of Psychology, University of Houston Houston, TX United States
                Author notes
                Corresponding Author: Ashley N D Meyer ameyer@ 123456bcm.edu
                Author information
                https://orcid.org/0000-0001-7993-8584
                https://orcid.org/0000-0002-9184-6524
                https://orcid.org/0000-0003-0549-0259
                https://orcid.org/0000-0002-9417-986X
                https://orcid.org/0000-0002-1131-4270
                https://orcid.org/0000-0002-4419-8974
                Article
                v22i1e14679
                10.2196/14679
                7055765
                32012052
                6c63aa9b-c153-4e2a-95ab-598edad32696
                ©Ashley N D Meyer, Traber D Giardina, Christiane Spitzmueller, Umber Shahid, Taylor M T Scott, Hardeep Singh. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.01.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 12 May 2019
                : 22 August 2019
                : 17 October 2019
                : 22 October 2019
                Categories
                Original Paper
                Original Paper

                Medicine
                clinical decision support systems,technology,diagnosis,patient safety,symptom checker,computer-assisted diagnosis

                Comments

                Comment on this article