43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of the Staphylococcus aureus GraSR Regulon Reveals Novel Links to Virulence, Stress Response and Cell Wall Signal Transduction Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The GraS/GraR two-component system has been shown to control cationic antimicrobial peptide (CAMP) resistance in the major human pathogen Staphylococcus aureus. We demonstrated that graX, also involved in CAMP resistance and cotranscribed with graRS, encodes a regulatory cofactor of the GraSR signaling pathway, effectively constituting a three-component system. We identified a highly conserved ten base pair palindromic sequence (5′ ACAAA TTTGT 3′) located upstream from GraR-regulated genes ( mprF and the dlt and vraFG operons), which we show to be essential for transcriptional regulation by GraR and induction in response to CAMPs, suggesting it is the likely GraR binding site. Genome-based predictions and transcriptome analysis revealed several novel GraR target genes. We also found that the GraSR TCS is required for growth of S. aureus at high temperatures and resistance to oxidative stress. The GraSR system has previously been shown to play a role in S. aureus pathogenesis and we have uncovered previously unsuspected links with the AgrCA peptide quorum-sensing system controlling virulence gene expression. We also show that the GraSR TCS controls stress reponse and cell wall metabolism signal transduction pathways, sharing an extensive overlap with the WalKR regulon. This is the first report showing a role for the GraSR TCS in high temperature and oxidative stress survival and linking this system to stress response, cell wall and pathogenesis control pathways.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria.

          A shuttle vector designated pMAD was constructed for quickly generating gene inactivation mutants in naturally nontransformable gram-positive bacteria. This vector allows, on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates, a quick colorimetric blue-white discrimination of bacteria which have lost the plasmid, greatly facilitating clone identification during mutagenesis. The plasmid was used in Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus to efficiently construct mutants with or without an associated antibiotic resistance gene.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates.

              The pathogenicity of Staphylococcus aureus strains varies tremendously (as seen with animals). It is largely dependent on global regulators, which control the production of toxins, virulence, and fitness factors. Despite the vast knowledge of staphylococcal molecular genetics, there is still widespread dispute over what factors must come together to make a strain highly virulent. S. aureus NCTC8325 (RN1 and derivatives) is a widely used model strain for which an incomparable wealth of knowledge has accumulated in the almost 50 years since its isolation. Although RN1 has functional agr, sarA, and sae global regulators, it is defective in two regulatory genes, rsbU (a positive activator of SigB) and tcaR (an activator of protein A transcription), and is therefore considered by many to be a poor model for studies of regulation and virulence. Here, we repaired these genes and compared the resulting RN1 derivatives with other widely used strains, Newman, USA300, UAMS-1, and COL, plus the parental RN1, with respect to growth, extracellular protein pattern, hemolytic activity, protein A production, pigmentation, biofilm formation, and mouse lethality. The tcaR-repaired strain, showed little alteration in these properties. However, the rsbU-repaired strain was profoundly altered. Hemolytic activity was largely decreased, the exoprotein pattern became much more similar to that of typical wild-type (wt) S. aureus, and there was a surprising increase in mouse lethality. We note that each of the strains tested has a mutational alteration in one or more other regulatory functions, and we conclude that the repaired RN1 is a good model strain for studies of staphylococcal regulation and pathobiology; although strain Newman has been used extensively for such studies in recent years, it has a missense mutation in saeS, the histidine kinase component of the sae signaling module, which profoundly alters its regulatory phenotype. If this mutation were repaired, Newman would be considerably improved as a model strain.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                1 July 2011
                11 July 2011
                : 6
                : 7
                : e21323
                Affiliations
                [1 ]Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
                [2 ]CNRS, URA 2172, Paris, France
                [3 ]Interfaculty Institute for Genetics and Functional Genomics, Department for Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany
                org-nameUniversity of Liverpool, United Kingdom
                Author notes

                Conceived and designed the experiments: TM MF AH. Performed the experiments: MF AH MD. Analyzed the data: TM MF UM. Contributed reagents/materials/analysis tools: MF AH MD UM. Wrote the paper: TM MF.

                Article
                PONE-D-11-07576
                10.1371/journal.pone.0021323
                3128592
                21765893
                6c4f8207-4504-4c1e-b1bb-227b5404bc50
                Falord et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 May 2011
                : 25 May 2011
                Page count
                Pages: 17
                Categories
                Research Article
                Biology
                Genetics
                Molecular Genetics
                Gene Regulation
                Gene Expression
                Gene Function
                Gene Networks
                Genomics
                Genome Analysis Tools
                Genetic Networks
                Transcriptomes
                Functional Genomics
                Genome Expression Analysis
                Microbiology
                Bacterial Pathogens
                Gram Positive
                Staphylococci
                Host-Pathogen Interaction
                Microbial Pathogens
                Pathogenesis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article