8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuronal apoptosis in morphine addiction and its molecular mechanism.

      International journal of clinical and experimental medicine

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to investigate neuronal apoptosis and expression of apoptosis related proteins (Fas, Caspase-3 and Bcl-2) in the brain of rates with morphine addiction. A total of 48 adult male Sprague-Dawley rats weighing 190-210 g were randomly divided into 3 groups (n=16 per group): morphine addiction group, morphine abstinence group and control group. Rats in the addiction group and the abstinence group were intraperitoneally treated with morphine for 13 days to induce morphine addiction. In abstinence group, rats were then intraperitoneally treated with naloxone at 5 mg/kg to induce abstinence for 30 min. Rats in the control group were injected with normal saline. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was employed to detect apoptotic cells. Immunohistochemistry and Western blot assay were performed to determine the expressions of Fas, Bcl-2 and Caspase-3 in the hippocampus. When compared with the control group, the proportion of apoptotic neurons increased significantly in the addiction group and the abstinence group (P<0.01), accompanied by significantly increased expressions of Fas and Caspase-3 (P<0.01) and markedly decreased Bcl-2 expression (P<0.01) in the hippocampuse. However, no significant differences were observed between the addiction and the abstinence group (P>0.05). Long term use of morphine can induce neuronal apoptosis in the brain by increasing the expressions of pro-apoptotic Fas and Caspase-3 and decreasing the anti-apoptotic Bcl-2 expression, which might be one of mechanisms underlying the opiate-induced neuronal damage.

          Related collections

          Author and article information

          Journal
          23936592
          3731185

          Comments

          Comment on this article