5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      N2 Fixation by Plasma-Activated Processes

      ,
      Joule
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          How a century of ammonia synthesis changed the world

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beyond fossil fuel–driven nitrogen transformations

            Nitrogen is fundamental to all of life and to many industrial processes. Nitrogen in its various oxidation states comprises the global nitrogen cycle, with the change between forms being redox reactions involving electrons and protons. The interchange of nitrogen oxidation states constitutes some of the most important industrial processes, with the energy for these processes being provided largely by fossil fuel. A key goal of research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, or biological catalysts, or by inventing new energy-efficient processes that rely on catalysts. These approaches, as well as the challenges involved, are discussed in this review. This review article reports on the current state of the field of nitrogen activation chemistry and discusses future directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Challenges in reduction of dinitrogen by proton and electron transfer.

              Ammonia is an important nutrient for the growth of plants. In industry, ammonia is produced by the energy expensive Haber-Bosch process where dihydrogen and dinitrogen form ammonia at a very high pressure and temperature. In principle one could also reduce dinitrogen upon addition of protons and electrons similar to the mechanism of ammonia production by nitrogenases. Recently, major breakthroughs have taken place in our understanding of biological fixation of dinitrogen, of molecular model systems that can reduce dinitrogen, and in the electrochemical reduction of dinitrogen at heterogeneous surfaces. Yet for efficient reduction of dinitrogen with protons and electrons major hurdles still have to be overcome. In this tutorial review we give an overview of the different catalytic systems, highlight the recent breakthroughs, pinpoint common grounds and discuss the bottlenecks and challenges in catalytic reduction of dinitrogen.
                Bookmark

                Author and article information

                Journal
                Joule
                Joule
                Elsevier BV
                25424351
                February 2021
                February 2021
                : 5
                : 2
                : 300-315
                Article
                10.1016/j.joule.2020.11.009
                6c30a8aa-7fe1-41ed-b7a3-84852445e206
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article