0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultracool dwarfs identified using spectra in LAMOST DR7

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we identify 734 ultracool dwarfs with a spectral type of M6 or later, including one L0. Of this sample, 625 were studied spectroscopically for the first time. All of these ultracool dwarfs are within 360~pc, with a \textit{Gaia} G magnitude brighter than ~19.2 mag. By studying the spectra and checking their stellar parameters (Teff, logg, and [FeH] derived with the LAMOST pipeline, we found their cool red nature and their metallicity to be consistent with the nature of Galactic thin-disk objects. Furthermore, 77 of them show lithium absorption lines at 6708A, further indicating their young ages and substellar nature. Kinematics obtained through LAMOST radial velocities, along with the proper motion and parallax data from Gaia EDR3, also suggest that the majority of our targets are thin-disk objects. Kinematic ages were estimated through the relationship between the velocity dispersion and the average age for a certain population. Moreover, we identified 35 binaries, with 6 of them reported as binaries for the first time.

          Related collections

          Author and article information

          Journal
          07 April 2022
          Article
          10.1051/0004-6361/202142009
          2204.03358
          6c0ccefd-c6b8-4658-b5c5-411d1ba5084d

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          13 pages, 11 figures, published in A&A, Volume 660. A38 (2022)
          astro-ph.SR astro-ph.GA

          Galaxy astrophysics,Solar & Stellar astrophysics
          Galaxy astrophysics, Solar & Stellar astrophysics

          Comments

          Comment on this article