62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of Phosphoregulation: Comparison of Phosphorylation Patterns across Yeast Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analysis of the phosphoproteomes and the gene interaction networks of divergent yeast species defines the relative contribution of changes in protein phosphorylation pathways to the generation of phenotypic diversity.

          Abstract

          The extent by which different cellular components generate phenotypic diversity is an ongoing debate in evolutionary biology that is yet to be addressed by quantitative comparative studies. We conducted an in vivo mass-spectrometry study of the phosphoproteomes of three yeast species ( Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe) in order to quantify the evolutionary rate of change of phosphorylation. We estimate that kinase–substrate interactions change, at most, two orders of magnitude more slowly than transcription factor (TF)–promoter interactions. Our computational analysis linking kinases to putative substrates recapitulates known phosphoregulation events and provides putative evolutionary histories for the kinase regulation of protein complexes across 11 yeast species. To validate these trends, we used the E-MAP approach to analyze over 2,000 quantitative genetic interactions in S. cerevisiae and Sc. pombe, which demonstrated that protein kinases, and to a greater extent TFs, show lower than average conservation of genetic interactions. We propose therefore that protein kinases are an important source of phenotypic diversity.

          Author Summary

          Natural selection at a population level requires phenotypic diversity, which at the molecular level arises by mutation of the genome of each individual. What kinds of changes at the level of the DNA are most important for the generation of phenotypic differences remains a fundamental question in evolutionary biology. One well-studied source of phenotypic diversity is mutation in gene regulatory regions that results in changes in gene expression, but what proportion of phenotypic diversity is due to such mutations is not entirely clear. We investigated the relative contribution to phenotypic diversity of mutations in protein-coding regions compared to mutations in gene regulatory sequences. Given the important regulatory role played by phosphorylation across biological systems, we focused on mutations in protein-coding regions that alter protein–protein interactions involved in the binding of kinases to their substrate proteins. We studied the evolution of this “phosphoregulation” by analyzing the in vivo complement of phosphorylated proteins (the “phosphoproteome”) in three highly diverged yeast species—the budding yeast Saccharomyces cerevisiae, the pathogenic yeast Candida albicans, and the fission yeast Schizosaccharomyces pombe—and integrating those data with existing data on thousands of known genetic interactions from S. cerevisiae and Sc. pombe. We show that kinase–substrate interactions are altered at a rate that is at most two orders of magnitude slower than the alteration of transcription factor (TF)–promoter interactions, whereas TFs and kinases both show a faster than average rate of functional divergence estimated by the cross-species analysis of genetic interactions. Our data provide a quantitative estimate of the relative frequencies of different kinds of functionally relevant mutations and demonstrate that, like mutations in gene regulatory regions, mutations that result in changes in kinase–substrate interactions are an important source of phenotypic diversity.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans.

          Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

            Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural history and evolutionary principles of gene duplication in fungi.

              Gene duplication and loss is a powerful source of functional innovation. However, the general principles that govern this process are still largely unknown. With the growing number of sequenced genomes, it is now possible to examine these events in a comprehensive and unbiased manner. Here, we develop a procedure that resolves the evolutionary history of all genes in a large group of species. We apply our procedure to seventeen fungal genomes to create a genome-wide catalogue of gene trees that determine precise orthology and paralogy relations across these species. We show that gene duplication and loss is highly constrained by the functional properties and interacting partners of genes. In particular, stress-related genes exhibit many duplications and losses, whereas growth-related genes show selection against such changes. Whole-genome duplication circumvents this constraint and relaxes the dichotomy, resulting in an expanded functional scope of gene duplication. By characterizing the functional fate of duplicate genes we show that duplicated genes rarely diverge with respect to biochemical function, but typically diverge with respect to regulatory control. Surprisingly, paralogous modules of genes rarely arise, even after whole-genome duplication. Rather, gene duplication may drive the modularization of functional networks through specialization, thereby disentangling cellular systems.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                June 2009
                June 2009
                23 June 2009
                : 7
                : 6
                : e1000134
                Affiliations
                [1 ]Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
                [2 ]California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
                [3 ]Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
                [4 ]Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
                [5 ]Cell Propulsion Laboratory (a National Institutes of Health Nanomedicine Development Center), University of California San Francisco, San Francisco, California, United States of America
                University of Bath, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: PB JCT DF AR WAL KMS ALB NJK. Performed the experiments: JCT DF AR. Analyzed the data: PB. Contributed reagents/materials/analysis tools: PB. Wrote the paper: PB NJK.

                Article
                08-PLBI-RA-4600R3
                10.1371/journal.pbio.1000134
                2691599
                19547744
                6bcdd1bd-ddff-4599-bfaa-8214310ad9d6
                Beltrao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 October 2008
                : 12 May 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Computational Biology/Signaling Networks
                Evolutionary Biology/Evolutionary and Comparative Genetics
                Genetics and Genomics/Comparative Genomics

                Life sciences
                Life sciences

                Comments

                Comment on this article