0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The potential of DEirlncRNAs: A novel approach to predict glioblastoma prognosis

      research-article
      a , 1 , a , 1 , a , b ,
      Heliyon
      Elsevier
      Glioblastoma, DEirlncRNAs, Tumor immune infiltration, Chemotherapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite tremendous evolution in therapies, the prognosis of glioblastoma (GBM) remains grim, which calls for innovative approaches to optimize chemotherapy efficacy and predict risk.

          Methods

          The transcriptome and clinical data of GBM were acquired from the Cancer Genome Atlas (TCGA), followed by the identification of differentially expressed immune-related long noncoding RNAs (DEirlncRNAs) with Pearson correlation and limma packet analyses. Survival-related DEirlncRNA pairs were screened with univariate Cox proportional hazard regression. Prognostic markers were obtained, and risk scores were calculated with Lasso regression and multivariate Cox risk regression analyses. The association of the prognostic risk model with immune cell infiltration was evaluated by comprehensively analyzing tumor-infiltrating immune cells with TIMER, XCELL, CIBERSORT, QUANTISEQ, and EPIC. Differences in half-maximal inhibitory concentration (IC50) values between the high- and low-risk groups were assessed with the Wilcoxon signed-rank test .

          Results

          A total of 276 DEirlncRNAs were identified, followed by the visualization of their expression patterns. Two prognosis-related DEirlncRNA pairs were screened, with high accuracy and reliability. The constructed prognostic risk model effectively distinguished between high- and low-risk patients, and significant differences were observed in survival outcomes between the high- and low-risk groups. Furthermore, risk scores were associated with tumor-infiltrating immune cells and DEirlncRNA expression. Additionally, the risk model had a correlation with the effectiveness of commonly used chemotherapeutic agents, providing clues into potential treatment responses.

          Conclusions

          In our study, a novel signature was constructed with paired DEirlncRNAs (regardless of their expression), which holds significant clinical predictive value and is a potential breakthrough for personalized management of GBM.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.

          Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            xCell: digitally portraying the tissue cellular heterogeneity landscape

            Tissues are complex milieus consisting of numerous cell types. Several recent methods have attempted to enumerate cell subsets from transcriptomes. However, the available methods have used limited sources for training and give only a partial portrayal of the full cellular landscape. Here we present xCell, a novel gene signature-based method, and use it to infer 64 immune and stromal cell types. We harmonized 1822 pure human cell type transcriptomes from various sources and employed a curve fitting approach for linear comparison of cell types and introduced a novel spillover compensation technique for separating them. Using extensive in silico analyses and comparison to cytometry immunophenotyping, we show that xCell outperforms other methods. xCell is available at http://xCell.ucsf.edu/. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1349-1) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate and adaptive immune cells in the tumor microenvironment.

              Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                22 February 2024
                15 March 2024
                22 February 2024
                : 10
                : 5
                : e26654
                Affiliations
                [a ]Department of Medical Oncology Cancer Center, Suining Central Hospital, Suining, 629000, Sichuan Province, China
                [b ]Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, 629000, Sichuan Province, China
                Author notes
                []Corresponding author. Department of Respiratory and Critical Care Medicine, Suining Central Hospital, No. 127, Desheng West Road, Chuanshan District, Suining, 629000, Sichuan Province, China. libo18583081825@ 123456163.com
                [1]

                They are co-first authors.

                Article
                S2405-8440(24)02685-9 e26654
                10.1016/j.heliyon.2024.e26654
                10907735
                38434266
                6bc73b96-2606-4eb3-bf4d-c5af8f5b16f0
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 August 2023
                : 16 December 2023
                : 16 February 2024
                Categories
                Research Article

                glioblastoma,deirlncrnas,tumor immune infiltration,chemotherapy

                Comments

                Comment on this article