Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modifying enzyme activity and selectivity by immobilization.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will be positive. For example, they may be related to the stabilization of a hyperactivated form of the enzyme, like in the case of lipases immobilized on hydrophobic supports via interfacial activation. In some other instances, these improvements will be just a consequence of random modifications in the enzyme properties that in some reactions will be positive while in others may be negative. For this reason, the preparation of a library of biocatalysts as broad as possible may be a key turning point to find an immobilized biocatalyst with improved properties when compared to the free enzyme. Immobilized enzymes will be dispersed on the support surface and aggregation will no longer be possible, while the free enzyme may suffer aggregation, which greatly decreases enzyme activity. Moreover, enzyme rigidification may lead to preservation of the enzyme properties under drastic conditions in which the enzyme tends to become distorted thus decreasing its activity. Furthermore, immobilization of enzymes on a support, mainly on a porous support, may in many cases also have a positive impact on the observed enzyme behavior, not really related to structural changes. For example, the promotion of diffusional problems (e.g., pH gradients, substrate or product gradients), partition (towards or away from the enzyme environment, for substrate or products), or the blocking of some areas (e.g., reducing inhibitions) may greatly improve enzyme performance. Thus, in this tutorial review, we will try to list and explain some of the main reasons that may produce an improvement in enzyme activity, specificity or selectivity, either real or apparent, due to immobilization.

          Related collections

          Author and article information

          Journal
          Chem Soc Rev
          Chemical Society reviews
          Royal Society of Chemistry (RSC)
          1460-4744
          0306-0012
          Aug 07 2013
          : 42
          : 15
          Affiliations
          [1 ] Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil.
          Article
          10.1039/c2cs35231a
          23059445
          6bc42a23-4d49-48e9-aec6-68c7b6f94f4d
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content153

          Cited by383