2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transition metal sulfides for electrochemical hydrogen evolution

      , ,
      International Journal of Hydrogen Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.

          Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photocatalyst releasing hydrogen from water.

            Direct splitting of water using a particulate photocatalyst would be a good way to produce clean and recyclable hydrogen on a large scale, and in the past 30 years various photocatalysts have been found that function under visible light. Here we describe an advance in the catalysis of the overall splitting of water under visible light: the new catalyst is a solid solution of gallium and zinc nitrogen oxide, (Ga(1-x)Zn(x))(N(1-x)O(x)), modified with nanoparticles of a mixed oxide of rhodium and chromium. The mixture functions as a promising and efficient photocatalyst in promoting the evolution of hydrogen gas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.

              Promising catalytic activity from molybdenum disulfide (MoS2) in the hydrogen evolution reaction (HER) is attributed to active sites located along the edges of its two-dimensional layered crystal structure, but its performance is currently limited by the density and reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst. Here we report dramatically enhanced HER catalysis (an electrocatalytic current density of 10 mA/cm(2) at a low overpotential of -187 mV vs RHE and a Tafel slope of 43 mV/decade) from metallic nanosheets of 1T-MoS2 chemically exfoliated via lithium intercalation from semiconducting 2H-MoS2 nanostructures grown directly on graphite. Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites. These distinct and previously unexploited features of 1T-MoS2 make these metallic nanosheets a highly competitive earth-abundant HER catalyst.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                International Journal of Hydrogen Energy
                International Journal of Hydrogen Energy
                Elsevier BV
                03603199
                July 2021
                July 2021
                : 46
                : 47
                : 24060-24077
                Article
                10.1016/j.ijhydene.2021.04.194
                6baf53a5-bd75-4fa4-8b08-ae951c1e0f61
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article