12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ATP- and Gap Junction–dependent Intercellular Calcium Signaling in Osteoblastic Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP 3)- sensitive intracellular calcium stores. In one model, IP 3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P 2 purinergic receptors. We studied mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y 2 (P 2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein connexin43 (Cx43), are well dye coupled, and lack P 2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P 2U receptors; they propagated fast calcium waves that required release of intracellular calcium stores and activation of P 2U purinergic receptors, but not gap junctional communication. ROS/P 2U transfectants and UMR/Cx43 transfectants expressed both types of calcium waves. Gap junction–independent, ATP-dependent intercellular calcium waves were also seen in hamster tracheal epithelia cells. These studies demonstrate that activation of P 2U purinergic receptors can propagate intercellular calcium, and describe a novel Cx43-dependent mechanism for calcium wave propagation that does not require release of intracellular calcium stores by IP 3. These studies suggest that gap junction communication mediated by either Cx43 or Cx45 does not allow passage of IP 3 well enough to elicit release of intracellular calcium stores in neighboring cells.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate.

            Intercellular Ca2+ signaling in primary cultures of glial cells was investigated with digital fluorescence video imaging. Mechanical stimulation of a single cell induced a wave of increased [Ca2+]i that was communicated to surrounding cells. This was followed by asynchronous Ca2+ oscillations in some cells. Similar communicated Ca2+ responses occurred in the absence of extracellular Ca2+, despite an initial decrease in [Ca2+]i in the stimulated cell. Mechanical stimulation in the presence of glutamate induced a typical communicated Ca2+ wave through cells undergoing asynchronous Ca2+ oscillations in response to glutamate. The coexistence of communicated Ca2+ waves and asynchronous Ca2+ oscillations suggests distinct mechanisms for intra- and intercellular Ca2+ signaling. This intercellular signaling may coordinate cooperative glial function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells

              DNAs coding for seven murine connexins (Cx) (Cx26, Cx31, Cx32, Cx37, Cx40, Cx43, and Cx45) are functionally expressed in human HeLa cells that were deficient in gap junctional communication. We compare the permeabilities of gap junctions comprised of different connexins to iontophoretically injected tracer molecules. Our results show that Lucifer yellow can pass through all connexin channels analyzed. On the other hand, propidium iodide and ethidium bromide penetrate very poorly or not at all through Cx31 and Cx32 channels, respectively, but pass through channels of other connexins. 4,6 Diamidino-2-phenylindole (DAPI) dihydrochloride shows less transfer among Cx31 or Cx43 transfectants. Neurobiotin is weakly transferred among Cx31 transfectants. Total junctional conductance in Cx31 or Cx45 transfected cells is only about half as high as in other connexin transfectants analyzed and does not correlate exactly with any of the tracer permeabilities. Permeability through different connexin channels appears to be dependent on the molecular structure of each tracer, i.e. size, charge and possibly rigidity. This supports the hypothesis that different connexin channels show different permeabilities to second messenger molecules as well as metabolites and may fulfill in this way their specific role in growth control and differentiation of cell types. In addition, we have investigated the function of heterotypic gap junctions after co-cultivation of two different connexin transfectants, one of which had been prelabeled with fluorescent dextran beads. Analysis of Lucifer yellow transfer reveals that HeLa cells expressing Cx31 (beta-type connexin) do not communicate with any other connexin transfectant tested but only with themselves. Two other beta-type connexin transfectants, HeLa-Cx26 and -Cx32, do not transmit Lucifer yellow to any of the alpha-type connexins analyzed. Among alpha- type connexins, Cx40 does not communicate with Cx43. Thus, connexins differ in their ability to form functional heterotypic gap junctions among mammalian cells.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                20 October 1997
                : 139
                : 2
                : 497-506
                Affiliations
                [* ]Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110; and []Osteoporosis Research Center, DK-1399 Copenhagen, Denmark
                Article
                10.1083/jcb.139.2.497
                2139805
                9334351
                6ba84eec-b69d-46ba-a851-db97f8e202ec
                Copyright @ 1997
                History
                : 13 January 1997
                : 31 July 1997
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article