16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes.

      1 , , ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast revealed that null mutants of RNase HI and/or Fen1 are not lethal, suggesting that an additional enzymatic activity may be required for the removal of RNA. One such enzyme is the Saccharomyces cerevisiae Dna2 helicase/endonuclease, which is essential for cell viability and is well suited to removing RNA primers of Okazaki fragments. In addition, Dna2 interacts genetically and physically with several proteins involved in the elongation or maturation of Okazaki fragments. Here we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA. The sequential action of these enzymes is governed by a single-stranded DNA-binding protein, replication protein-A (RPA). Our results demonstrate that the processing of Okazaki fragments in eukaryotes differs significantly from, and is more complicated than, that occurring in prokaryotes. We propose a novel biochemical mechanism for the maturation of eukaryotic Okazaki fragments.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          0028-0836
          0028-0836
          Jul 26 2001
          : 412
          : 6845
          Affiliations
          [1 ] National Creative Research Initiative Center for Cell Cycle Control, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchun-Dong, Changan-Ku, Suwon, Kyunggi-Do 440-746, Korea.
          Article
          35086609
          10.1038/35086609
          11473323
          6b65122a-59e0-4bb1-9584-f1a835d08030
          History

          Comments

          Comment on this article