27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization

      , , ,
      Materials Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          The future of seawater desalination: energy, technology, and the environment.

          In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optical properties of metallic films for vertical-cavity optoelectronic devices.

              We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
                Bookmark

                Author and article information

                Journal
                Materials Today
                Materials Today
                Elsevier BV
                13697021
                January 2021
                January 2021
                : 42
                : 178-191
                Article
                10.1016/j.mattod.2020.10.022
                6b64541e-e074-47fd-9985-e811bb2e4aa2
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article