35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interferon and Ribavirin Combination Treatment Synergistically Inhibit HCV Internal Ribosome Entry Site Mediated Translation at the Level of Polyribosome Formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Although chronic hepatitis C virus (HCV) infection has been treated with the combination of interferon alpha (IFN-α) and ribavirin (RBV) for over a decade, the mechanism of antiviral synergy is not well understood. We aimed to determine the synergistic antiviral mechanisms of IFN-α and RBV combination treatment using HCV cell culture.

          Methods

          The antiviral efficacy of IFN-α, RBV alone and in combination was quantitatively measured using HCV infected and replicon cell culture. Direct antiviral activity of these two drugs at the level of HCV internal ribosome entry site (IRES) mediated translation in Huh-7 cell culture was investigated. The synergistic antiviral effect of IFN-α and RBV combination treatment was verified using both the CalcuSyn Software and MacSynergy Software.

          Results

          RBV combination with IFN-α efficiently inhibits HCV replication cell culture. Our results demonstrate that IFN-α, interferon lambda (IFN-λ) and RBV each inhibit the expression of HCV IRES-GFP and that they have a minimal effect on the expression of GFP in which the translation is not IRES dependent. The combination treatments of RBV along with IFN-α or IFN-λ were highly synergistic with combination indexes <1. We show that IFN-α treatment induce levels of PKR and eIF2α phosphorylation that prevented ribosome loading of the HCV IRES-GFP mRNA. Silencing of PKR expression in Huh-7 cells prevented the inhibitory effect of IFN-α on HCV IRES-GFP expression. RBV also blocked polyribosome loading of HCV-IRES mRNA through the inhibition of cellular IMPDH activity, and induced PKR and eIF2α phosphorylation. Knockdown of PKR or IMPDH prevented RBV induced HCV IRES-GFP translation.

          Conclusions

          We demonstrated both IFN-α and RBV inhibit HCV IRES through prevention of polyribosome formation. The combination of IFN-α and RBV treatment synergistically inhibits HCV IRES translation via using two different mechanisms involving PKR activation and depletion of intracellular guanosine pool through inhibition of IMPDH.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global burden of hepatitis C.

            Hepatitis C is of concern both to industrialized and developing countries. Preliminary unpublished estimates of the global burden of disease (GBD) attributable to HCV-related chronic liver disease seem to be substantial. Therefore, the reduction of global mortality and morbidity related to chronic hepatitis C should be a concern to public health authorities, and primary, secondary and tertiary prevention activities should be implemented and monitored in each country, with precise targets set to be reached. In order to decide on national health policies, there is a need to estimate the burden of disease, globally, regionally and nationally. To evaluate the GBD, three components have to be assessed: 1) The global, regional and national burden of morbidity and mortality associated with HCV infection, based on prevalence, incidence, transmission and economics; 2) The natural history of HCV infection, including 'healthy individuals'; and 3) The areas for which more research is needed. A working group was created to assist the World Health organization (WHO) in estimating the GBD associated with HCV infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hepatitis C virus entry depends on clathrin-mediated endocytosis.

              Due to difficulties in cell culture propagation, the mechanisms of hepatitis C virus (HCV) entry are poorly understood. Here, postbinding cellular mechanisms of HCV entry were studied using both retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the HCV clone JFH-1 propagated in cell culture (HCVcc). HCVpp entry was measured by quantitative real-time PCR after 3 h of contact with target cells, and HCVcc infection was quantified by immunoblot analysis and immunofluorescence detection of HCV proteins expressed in infected cells. The functional role of clathrin-mediated endocytosis in HCV entry was assessed by small interfering RNA-mediated clathrin heavy chain depletion and with chlorpromazine, an inhibitor of clathrin-coated pit formation at the plasma membrane. In both conditions, HCVpp entry and HCVcc infection were inhibited. HCVcc infection was also inhibited by pretreating target cells with bafilomycin A1 or chloroquine, two drugs known to interfere with endosome acidification. These data indicate that HCV enters target cells by clathrin-mediated endocytosis, followed by a fusion step from within an acidic endosomal compartment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                23 August 2013
                : 8
                : 8
                : e72791
                Affiliations
                [1 ]Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
                [2 ]Micribiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
                [3 ]Gastroenterology, Hepatology and Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
                [4 ]Department of Biochemistry and Molecular Biology, Penn State University, University Park, United States of America
                [5 ]Hepatitis Research Program, Southern Research Institute, Frederick, Maryland, United States of America
                Saint Louis University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SH PKC RFG SD. Performed the experiments: RP SH SC PKC SND RK. Analyzed the data: RP SH PKC SND ZH HZ SD. Contributed reagents/materials/analysis tools: CEC HZ. Wrote the manuscript: RFG LAB SD.

                Article
                PONE-D-13-19543
                10.1371/journal.pone.0072791
                3751885
                24009705
                6b54f9a5-222c-44e9-8379-fe55f73bc2d2
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 May 2013
                : 12 July 2013
                Funding
                This work was supported from National Institutes of Health grant CA127481, CA089121, AI 103106 and bridge funding received from Tulane University Health Sciences Center. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article