7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora

      research-article
      1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , * , , 1 , * ,
      Research
      AAAS

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Akkermansia muciniphila ( A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.

          Related collections

          Most cited references228

          • Record: found
          • Abstract: found
          • Article: not found

          Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors

          Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizeable minority of cancer patients. Here, we show that primary resistance to ICI can be due to abnormal gut microbiome composition. Antibiotics (ATB) inhibited the clinical benefit of ICI in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICI (but not from non-responding patients) into germ-free or ATB-treated mice ameliorated the antitumor effects of PD-1 blockade. Metagenomics of patient stools at diagnosis revealed correlations between clinical responses to ICI and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila post-FMT with non-responder feces restored the efficacy of PD-1 blockade in an IL-12-dependent manner, by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into tumor beds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A metagenome-wide association study of gut microbiota in type 2 diabetes.

            Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Microbiota-Gut-Brain Axis

              The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
                Bookmark

                Author and article information

                Journal
                Research (Wash D C)
                Research (Wash D C)
                RESEARCH
                Research
                AAAS
                2639-5274
                03 April 2023
                2023
                2023
                : 6
                : 0107
                Affiliations
                [ 1 ]State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.
                [ 2 ]Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China.
                Author notes
                [*] [* ]Address correspondence to: ljli@ 123456zju.edu.cn (L.L.); lujuanzju@ 123456zju.edu.cn (J.L.)
                [†]

                These authors contributed equally to this work.

                Article
                0107
                10.34133/research.0107
                10079265
                37040299
                6b334de5-ccbf-4aa7-9234-3ac7f5fba2e4
                Copyright @ 2023

                Exclusive Licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

                History
                : 21 November 2022
                : 15 March 2023
                : 03 April 2023
                Page count
                Figures: 4, Tables: 0, References: 228, Pages: 0
                Categories
                Review Article

                Comments

                Comment on this article