0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent Developments in Natural Gas Flaring Reduction and Reformation to Energy-Efficient Fuels: A Review

      1 , 2 , 1
      Energy & Fuels
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references270

          • Record: found
          • Abstract: not found
          • Article: not found

          Titanium dioxide photocatalysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.

            Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of dry (CO2) reforming of methane over noble metal catalysts.

              Dry (CO2) reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer-Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800-1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The most widely used catalysts for DRM are based on Ni. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. This review will cover DRM literature for catalysts based on Rh, Ru, Pt, and Pd metals. This includes the effect of these noble metals on the kinetics, mechanism and deactivation of these catalysts.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Energy & Fuels
                Energy Fuels
                American Chemical Society (ACS)
                0887-0624
                1520-5029
                March 04 2021
                February 23 2021
                March 04 2021
                : 35
                : 5
                : 3675-3714
                Affiliations
                [1 ]Chemical Reaction Engineering Group (GREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
                [2 ]Engineering and Management Sciences (BUITEMS), Balochistan University of Information Technology Quetta, Pakistan
                Article
                10.1021/acs.energyfuels.0c04269
                6b256896-b024-4c9c-92f3-58899b6405ae
                © 2021

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article