4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plaque Macrophage‐Targeting Nanosystems with Cooperative Co‐Regulation of ROS and TRAF6 for Stabilization of Atherosclerotic Plaques

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

          Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery 1 . However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear 2-4 . Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of the TLR signaling adapter tumor necrosis factor receptor-associated factor 6 (TRAF6) to mitochondria where it engages evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a protein implicated in mitochondrial respiratory chain assembly 5 . Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT and TRAF6 depleted macrophages exhibit decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results therefore reveal a novel pathway linking innate immune signaling to mitochondria, implicate mROS as important components of antibacterial responses, and further establish mitochondria as hubs for innate immune signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The changing landscape of atherosclerosis

            Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis-such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress-have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the 'vulnerable plaque' concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanozyme: new horizons for responsive biomedical applications.

              Nanozymes are nanomaterial-based artificial enzymes. By effectively mimicking catalytic sites of natural enzymes or harboring multivalent elements for reactions, nanozyme systems have successfully served as direct surrogates of traditional enzymes for catalysis. With the rapid development and ever-deepening understanding of nanotechnology, nanozymes offer higher catalytic stability, ease of modification and lower manufacturing cost than protein enzymes. Additionally, nanozymes possess inherent nanomaterial properties, providing not only a simple substitute of enzymes but also a multimodal platform interfacing complex biologic environments. Recent extensive research has focused on designing various nanozyme systems that are responsive to one or multiple substrates by tailored means. Catalytic activities of nanozymes can be regulated by pH, H2O2 and glutathione concentrations and levels of oxygenation in different microenvironments. Moreover, nanozymes can be remotely-controlled via different stimuli, including a magnetic field, light, ultrasound, and heat. Collectively, these factors can be adjusted to maximize the diagnostic and therapeutic efficacies of different diseases in biomedical settings. Therefore, by integrating the catalytic property and inherent nanomaterial nature of nanozyme systems, we anticipate that stimuli-responsive nanozymes will open up new horizons for diagnosis, treatment, and theranostics.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                April 04 2023
                Affiliations
                [1 ] Center of Scientific Research Chengdu Medical College Chengdu Sichuan 610500 PR China
                [2 ] Key Laboratory of Drug Targeting and Drug Delivery Systems West China School of Pharmacy Sichuan University Chengdu Sichuan 610041 P. R. China
                [3 ] State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610065 P. R. China
                Article
                10.1002/adfm.202301053
                6afc2d9e-09f6-4719-8477-c93ee21670b1
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article