7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Current therapeutic approaches and promising perspectives of using bioengineered peptides in fighting chemoresistance in triple-negative breast cancer.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer is a collation of malignancies that manifest in the mammary glands at the early stages. Among breast cancer subtypes, triple-negative breast cancer (TNBC) shows the most aggressive behavior, with apparent stemness features. Owing to the lack of response to hormone therapy and specific targeted therapies, chemotherapy remains the first line of the TNBC treatment. However, the acquisition of resistance to chemotherapeutic agents increase therapy failure, and promotes cancer recurrence and distant metastasis. Invasive primary tumors are the birthplace of cancer burden, though metastasis is a key attribute of TNBC-associated morbidity and mortality. Targeting the chemoresistant metastases-initiating cells via specific therapeutic agents with affinity to the upregulated molecular targets is a promising step in the TNBC clinical management. Exploring the capacity of peptides as biocompatible entities with the specificity of action, low immunogenicity, and robust efficacy provides a principle for designing peptide-based drugs capable of increasing the efficacy of current chemotherapy agents for selective targeting of the drug-tolerant TNBC cells. Here, we first focus on the resistance mechanisms that TNBC cells acquire to evade the effect of chemotherapeutic agents. Next, the novel therapeutic approaches employing tumor-targeting peptides to exploit the mechanisms of drug resistance in chemorefractory TNBC are described.

          Related collections

          Author and article information

          Journal
          Biochem Pharmacol
          Biochemical pharmacology
          Elsevier BV
          1873-2968
          0006-2952
          Apr 2023
          : 210
          Affiliations
          [1 ] School of Chemical Engineering-Biotechnology, College of Engineering, University of Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
          [2 ] Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
          [3 ] Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA.
          [4 ] Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address: rezaei_nima@tums.ac.ir.
          Article
          S0006-2952(23)00050-3
          10.1016/j.bcp.2023.115459
          36813121
          6adb8dc8-df81-411e-a2e3-f13a02310de5
          History

          Chemotherapy,Triple negative breast neoplasms,Pharmaceutical preparations,Peptides,Peptide library,Drug resistance

          Comments

          Comment on this article