36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Social Disparity on Prefrontal Function in Childhood

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prefrontal cortex (PFC) develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES) and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of stress throughout the lifespan on the brain, behaviour and cognition.

          Chronic exposure to stress hormones, whether it occurs during the prenatal period, infancy, childhood, adolescence, adulthood or aging, has an impact on brain structures involved in cognition and mental health. However, the specific effects on the brain, behaviour and cognition emerge as a function of the timing and the duration of the exposure, and some also depend on the interaction between gene effects and previous exposure to environmental adversity. Advances in animal and human studies have made it possible to synthesize these findings, and in this Review a model is developed to explain why different disorders emerge in individuals exposed to stress at different times in their lives.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Socioeconomic status and the developing brain.

            Childhood socioeconomic status (SES) is associated with cognitive achievement throughout life. How does SES relate to brain development, and what are the mechanisms by which SES might exert its influence? We review studies in which behavioral, electrophysiological and neuroimaging methods have been used to characterize SES disparities in neurocognitive function. These studies indicate that SES is an important predictor of neurocognitive performance, particularly of language and executive function, and that SES differences are found in neural processing even when performance levels are equal. Implications for basic cognitive neuroscience and for understanding and ameliorating the problems related to childhood poverty are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical period regulation.

              Neuronal circuits are shaped by experience during critical periods of early postnatal life. The ability to control the timing, duration, and closure of these heightened levels of brain plasticity has recently become experimentally accessible, especially in the developing visual system. This review summarizes our current understanding of known critical periods across several systems and species. It delineates a number of emerging principles: functional competition between inputs, role for electrical activity, structural consolidation, regulation by experience (not simply age), special role for inhibition in the CNS, potent influence of attention and motivation, unique timing and duration, as well as use of distinct molecular mechanisms across brain regions and the potential for reactivation in adulthood. A deeper understanding of critical periods will open new avenues to "nurture the brain"-from international efforts to link brain science and education to improving recovery from injury and devising new strategies for therapy and lifelong learning.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                26 April 2012
                : 7
                : 4
                : e35744
                Affiliations
                [1 ]School of Public Health, Harvard University, Boston, Massachusetts, United States of America
                [2 ]Children's Hospital Boston, Boston, Massachusetts, United States of America
                [3 ]Eli Lilly and Company, Indianapolis, Indiana, United States of America
                [4 ]School of Public Health, University of California, Berkeley, California, United States of America
                [5 ]Helen Wills Neuroscience Institute, Berkeley, California, United States of America
                [6 ]Psychology Department, University of California, Berkeley, California, United States of America
                [7 ]College for Interdisciplinary Studies and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
                University of Maryland, College Park, United States of America
                Author notes

                Conceived and designed the experiments: MAS KS DJ MD WTB. Performed the experiments: MAS KS. Analyzed the data: MAS KS DJ. Contributed reagents/materials/analysis tools: MAS KS DJ MD WTB. Wrote the paper: MAS WTB.

                Article
                PONE-D-11-15355
                10.1371/journal.pone.0035744
                3338535
                22563395
                6ad36b50-2560-45db-be99-af9a3dadbe1d
                Sheridan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 July 2011
                : 23 March 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Biochemistry
                Neurochemistry
                Neurochemicals
                Neuromodulation
                Neuroscience
                Neuroimaging
                Fmri
                Cognitive Neuroscience
                Developmental Neuroscience
                Medicine
                Neurology
                Neuroimaging
                Social and Behavioral Sciences
                Psychology
                Cognitive Psychology
                Learning
                Reasoning
                Developmental Psychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article