Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          This paper studies the carbon footprint and water scarcity footprint (WSF) of a milk protein, beta-lactoglobulin, produced by cellular agriculture and compares this to extracted dairy protein from milk. The calculations of the microbially produced proteins were based on a model of a hypothetical industrial-scale facility. The purpose of the study is to examine the role relative to dairy of microbially produced milk proteins in meeting future demand for more sustainably produced protein of high nutritional quality.

          Methods

          The evaluated process considers beta-lactoglobulin production in bioreactor cultivation with filamentous fungi T. reesei and downstream processing for product purification. The model considers four production scenarios in four different locations (New Zealand, Germany, US, and Australia) with a cradle-to-gate system boundary. The scenarios consider different sources of carbon (glucose and sucrose), different options for the fungal biomass treatment (waste or animal feed) and for the purification of the product. Allocation to biomass was avoided by considering it substituting the production of general protein feed. The carbon footprint and WSF (based on AWaRe factors) modelling is compared to calculations and actual data on extracted dairy protein production in NZ. The uncertainties of modelled process were addressed with a sensitivity analysis.

          Results and discussion

          The carbon footprint of microbially produced protein varied depending on the location (energy profile) and source of carbon used. The lowest carbon footprint (5.5 t CO 2e/t protein) was found with sucrose-based production in NZ and the highest (17.6 t CO 2e/t protein) in Australia with the glucose and chromatography step. The WSF results varied between 88–5030 m 3 world eq./t protein, depending on the location, type of sugar and purification method used. The avoided feed production had a bigger impact on the WSF than on the carbon footprint. Both footprints were sensitive to process parameters of final titre and protein yield from sugar. The results for milk protein were of similar magnitude, c.10 t CO 2e/t protein and 290–11,300 m 3 world eq./t protein.

          Conclusions

          The environmental impacts of microbially produced milk protein were of the same magnitude as for extracted dairy protein. The main contributions were sugar and electricity production. The carbon footprints of proteins produced by cellular agriculture have potential for significant reduction when renewable energy and more sustainable carbon sources are used and combined with evolving knowledge and technology in microbial production. Similarly, the carbon footprint of milk proteins can potentially be reduced through methane reduction technologies.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

          A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Livestock: On our plates or eating at our table? A new analysis of the feed/food debate

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Directed evolution of industrial enzymes: an update.

              The use of enzymes in industrial processes can often eliminate the use of high temperatures, organic solvents and extremes of pH, while at the same time offering increased reaction specificity, product purity and reduced environmental impact. The growing use of industrial enzymes is dependent on constant innovation to improve performance and reduce cost. This innovation is driven by a rapidly increasing database of natural enzyme diversity, recombinant DNA and fermentation technologies that allow this diversity to be produced at low cost, and protein modification tools that enable enzymes to be tuned to fit into the industrial marketplace.
                Bookmark

                Author and article information

                Contributors
                Journal
                The International Journal of Life Cycle Assessment
                Int J Life Cycle Assess
                Springer Science and Business Media LLC
                0948-3349
                1614-7502
                August 2022
                August 26 2022
                August 2022
                : 27
                : 8
                : 1017-1034
                Article
                10.1007/s11367-022-02087-0
                6a949b0a-d610-412d-9b7e-c9ae8c8d2130
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content51

                Cited by6

                Most referenced authors722