4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correcting Task fMRI Signals for Variability in Baseline CBF Improves BOLD-Behavior Relationships: A Feasibility Study in an Aging Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blood Oxygen Level Dependent (BOLD) functional MRI is a complex neurovascular signal whose magnitude depends on baseline physiological factors such as cerebral blood flow (CBF). Because baseline CBF varies across the brain and is altered with aging, the interpretation of stand-alone aging-related BOLD changes can be misleading. The primary objective of this study was to develop a methodology that combines task fMRI and arterial spin labeling (ASL) techniques to sensitize task-induced BOLD activity by covarying out the baseline physiology (i.e., CBF) in an aging model. We recruited 11 younger and 13 older healthy participants who underwent ASL and an overt language fMRI task (semantic category member generation). We measured in-scanner language performance to investigate the effect of BOLD sensitization on BOLD-behavior relationships. The results demonstrate that our correction approach is effective at enhancing the specificity and sensitivity of the BOLD signal in both groups. In addition, the correction strengthens the statistical association between task BOLD activity and behavioral performance. Although CBF has inherent age dependence, our results show that retaining the age factor within CBF aides in greater sensitization of task fMRI signals. From a cognitive standpoint, compared to young adults, the older participants showed a delayed domain-general language-related task activity possibly due to compromised vessel compliance. Further, assessment of functional evolution of corrected BOLD activity revealed biphasic BOLD dynamics in both groups where BOLD deactivation may reflect greater semantic demand or increased premium on domain general executive functioning in response to task difficulty. Although it was promising to note that the predictability of behavior using the proposed methodology outperforms other methodologies (i.e., no correction and normalization by division), and provides moderate stability and adequate power, further work with a larger cohort and other task designs is necessary to improve the stability of predicting associated behavior. In summary, we recommend correction of task fMRI signals by covarying out baseline CBF especially when comparing groups with different neurovascular properties. Given that ASL and BOLD fMRI are well established and widely employed techniques, our proposed multi-modal methodology can be readily implemented into data processing pipelines to obtain more accurate BOLD activation maps.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Que PASA? The posterior-anterior shift in aging.

          A consistent finding from functional neuroimaging studies of cognitive aging is an age-related reduction in occipital activity coupled with increased frontal activity. This posterior-anterior shift in aging (PASA) has been typically attributed to functional compensation. The present functional magnetic resonance imaging sought to 1) confirm that PASA reflects the effects of aging rather than differences in task difficulty; 2) test the compensation hypothesis; and 3) investigate whether PASA generalizes to deactivations. Young and older participants were scanned during episodic retrieval and visual perceptual tasks, and age-related changes in brain activity common to both tasks were identified. The study yielded 3 main findings. First, inconsistent with a difficulty account, the PASA pattern was found across task and confidence levels when matching performance among groups. Second, supporting the compensatory hypothesis, age-related increases in frontal activity were positively correlated with performance and negatively correlated with the age-related occipital decreases. Age-related increases and correlations with parietal activity were also found. Finally, supporting the generalizability of the PASA pattern to deactivations, aging reduced deactivations in posterior midline cortex but increased deactivations in medial frontal cortex. Taken together, these findings demonstrate the validity, function, and generalizability of PASA, as well as its importance for the cognitive neuroscience of aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical factors in arterial aging: a clinical perspective.

            The human arterial system in youth is beautifully designed for its role of receiving spurts of blood from the left ventricle and distributing this as steady flow through peripheral capillaries. Central to such design is "tuning" of the heart to arterial tree; this minimizes aortic pressure fluctuations and confines flow pulsations to the larger arteries. With aging, repetitive pulsations (some 30 million/year) cause fatigue and fracture of elastin lamellae of central arteries, causing them to stiffen (and dilate), so that reflections return earlier to the heart; in consequence, aortic systolic pressure rises, diastolic pressure falls, and pulsations of flow extend further into smaller vessels of vasodilated organs (notably the brain and kidney). Stiffening leads to increased left ventricular (LV) load with hypertrophy, decreased capacity for myocardial perfusion, and increased stresses on small arterial vessels, particularly of brain and kidney. Clinical manifestations are a result of diastolic LV dysfunction with dyspnea, predisposition to angina, and heart failure, and small vessel degeneration in brain and kidney with intellectual deterioration and renal failure. While aortic stiffening is the principal cause of cardiovascular disease with age in persons who escape atherosclerotic complications, it is not a specific target for therapy. The principal target is the smooth muscle in distributing arteries, whose relaxation has little effect on peripheral resistance but causes substantial reduction in the magnitude of wave reflection. Such relaxation is achieved through regular exercise and with the vasodilating drugs that are used in modern treatment of hypertension and cardiac failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization.

              Whole-brain neuroimaging studies have demonstrated regional variations in function within human cingulate cortex. At the same time, regional variations in cingulate anatomical connections have been found in animal models. It has, however, been difficult to estimate the relationship between connectivity and function throughout the whole cingulate cortex within the human brain. In this study, magnetic resonance diffusion tractography was used to investigate cingulate probabilistic connectivity in the human brain with two approaches. First, an algorithm was used to search for regional variations in the probabilistic connectivity profiles of all cingulate cortex voxels with the whole of the rest of the brain. Nine subregions with distinctive connectivity profiles were identified. It was possible to characterize several distinct areas in the dorsal cingulate sulcal region. Several distinct regions were also found in subgenual and perigenual cortex. Second, the probabilities of connection between cingulate cortex and 11 predefined target regions of interest were calculated. Cingulate voxels with a high probability of connection with the different targets formed separate clusters within cingulate cortex. Distinct connectivity fingerprints characterized the likelihood of connections between the extracingulate target regions and the nine cingulate subregions. Last, a meta-analysis of 171 functional studies reporting cingulate activation was performed. Seven different cognitive conditions were selected and peak activation coordinates were plotted to create maps of functional localization within the cingulate cortex. Regional functional specialization was found to be related to regional differences in probabilistic anatomical connectivity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                30 April 2020
                2020
                : 14
                : 336
                Affiliations
                [1] 1Department of Neurology, Emory University , Atlanta, GA, United States
                [2] 2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC) , Decatur, GA, United States
                [3] 3Department of Physics and Astronomy, Georgia State University , Atlanta, GA, United States
                [4] 4Department of Biostatistics and Bioinformatics, Emory University , Atlanta, GA, United States
                [5] 5Department of Radiology and Imaging Sciences, Emory University , Atlanta, GA, United States
                [6] 6Department of Psychology, Georgia State University , Atlanta, GA, United States
                [7] 7Division of Physical Therapy, School of Medicine, Emory University , Atlanta, GA, United States
                Author notes

                Edited by: John Ashburner, University College London, United Kingdom

                Reviewed by: Mitul Ashok Mehta, King’s College London, United Kingdom; Piero Chiacchiaretta, Università degli Studi G. d’Annunzio Chieti e Pescara, Italy

                *Correspondence: Venkatagiri Krishnamurthy, venkatagiri@ 123456emory.edu

                †Present address: Jonathan H. Drucker, Aptima, Inc., Woburn, MA, United States

                ‡These authors share senior authorship

                This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.00336
                7205008
                32425745
                6a6dbb03-6078-442e-9b51-0ccfd63d78aa
                Copyright © 2020 Krishnamurthy, Krishnamurthy, Drucker, Kundu, Ji, Hortman, Roberts, Mammino, Tran, Gopinath, McGregor, Rodriguez, Qiu, Crosson and Nocera.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 August 2019
                : 20 March 2020
                Page count
                Figures: 5, Tables: 3, Equations: 4, References: 62, Pages: 17, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                language fmri,domain-general,semantic fluency,bold deactivation,cerebral blood flow,sensitization,aging

                Comments

                Comment on this article